FunASR项目中微调seaco_paraformer模型的多卡训练问题解析
问题背景
在FunASR语音识别项目中,用户尝试使用seaco_paraformer_large模型进行热词微调时,遇到了多GPU训练的问题。具体表现为:单卡训练可以正常运行,但当使用多卡训练时,系统会抛出"RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one"的错误。
环境配置
出现该问题的典型环境配置为:
- Python 3.8.5
- PyTorch 2.0.1
- FunASR 1.0.19
- NVIDIA RTX 3090 GPU
问题原因分析
这个错误通常出现在使用PyTorch的DistributedDataParallel(DDP)进行多卡训练时。当模型在前向传播过程中产生了一些不需要反向传播的中间变量时,DDP的梯度同步机制可能会出现问题。
在FunASR的seaco_paraformer模型中,由于其特殊的结构设计,确实可能存在一些在前向传播中使用但在反向传播中不需要的中间变量。这种情况下,DDP默认会检查所有参数的梯度计算情况,当发现某些参数没有被使用时就会报错。
解决方案
经过项目维护者的确认,正确的解决方案是:
- 在模型训练配置中设置
find_unused_parameters=True参数 - 这个设置不会影响模型最终的训练效果
具体实现方式
有两种方法可以设置这个参数:
方法一:直接修改源代码
在FunASR的源代码文件funasr/train_utils/trainer_ds.py中,可以找到DistributedDataParallel的初始化部分,直接添加find_unused_parameters=True参数。
方法二:通过配置文件设置
在训练配置文件中添加相应的参数设置。需要注意的是,有些用户反馈通过命令行参数++train_conf.find_unused_parameters=true的方式可能不生效,这种情况下建议直接修改配置文件。
技术建议
- 对于复杂的语音识别模型,特别是像seaco_paraformer这样的大型模型,多卡训练时出现此类问题是比较常见的
- 设置
find_unused_parameters=True确实会增加一些计算开销,但对于模型效果没有负面影响 - 如果训练过程中出现内存不足的情况,可以适当减小batch size或使用梯度累积技术
总结
FunASR项目中的seaco_paraformer模型在多卡训练时需要特别注意参数同步问题。通过合理设置find_unused_parameters参数,可以顺利实现多卡训练,同时保证模型效果不受影响。这个问题也提醒我们,在使用复杂模型进行分布式训练时,需要充分理解框架的同步机制和模型的计算图结构。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00