FunASR项目中微调seaco_paraformer模型的多卡训练问题解析
问题背景
在FunASR语音识别项目中,用户尝试使用seaco_paraformer_large模型进行热词微调时,遇到了多GPU训练的问题。具体表现为:单卡训练可以正常运行,但当使用多卡训练时,系统会抛出"RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one"的错误。
环境配置
出现该问题的典型环境配置为:
- Python 3.8.5
- PyTorch 2.0.1
- FunASR 1.0.19
- NVIDIA RTX 3090 GPU
问题原因分析
这个错误通常出现在使用PyTorch的DistributedDataParallel(DDP)进行多卡训练时。当模型在前向传播过程中产生了一些不需要反向传播的中间变量时,DDP的梯度同步机制可能会出现问题。
在FunASR的seaco_paraformer模型中,由于其特殊的结构设计,确实可能存在一些在前向传播中使用但在反向传播中不需要的中间变量。这种情况下,DDP默认会检查所有参数的梯度计算情况,当发现某些参数没有被使用时就会报错。
解决方案
经过项目维护者的确认,正确的解决方案是:
- 在模型训练配置中设置
find_unused_parameters=True
参数 - 这个设置不会影响模型最终的训练效果
具体实现方式
有两种方法可以设置这个参数:
方法一:直接修改源代码
在FunASR的源代码文件funasr/train_utils/trainer_ds.py
中,可以找到DistributedDataParallel的初始化部分,直接添加find_unused_parameters=True
参数。
方法二:通过配置文件设置
在训练配置文件中添加相应的参数设置。需要注意的是,有些用户反馈通过命令行参数++train_conf.find_unused_parameters=true
的方式可能不生效,这种情况下建议直接修改配置文件。
技术建议
- 对于复杂的语音识别模型,特别是像seaco_paraformer这样的大型模型,多卡训练时出现此类问题是比较常见的
- 设置
find_unused_parameters=True
确实会增加一些计算开销,但对于模型效果没有负面影响 - 如果训练过程中出现内存不足的情况,可以适当减小batch size或使用梯度累积技术
总结
FunASR项目中的seaco_paraformer模型在多卡训练时需要特别注意参数同步问题。通过合理设置find_unused_parameters
参数,可以顺利实现多卡训练,同时保证模型效果不受影响。这个问题也提醒我们,在使用复杂模型进行分布式训练时,需要充分理解框架的同步机制和模型的计算图结构。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









