Apache APISIX中基于GraphQL请求参数的接口白名单配置方案
背景介绍
在现代API网关Apache APISIX的实际应用中,经常会遇到需要针对GraphQL接口进行精细化权限控制的场景。与传统的REST API不同,GraphQL通常只有一个统一的入口端点,所有请求都发送到同一个URL,通过请求体中的参数来区分不同的操作。这种设计模式给API网关的权限控制带来了新的挑战。
问题分析
在Apache APISIX中配置接口权限时,传统方法通常基于URL路径进行匹配。但对于GraphQL接口,所有请求都指向同一个端点(如/graphql),这使得基于路径的白名单配置方法失效。我们需要一种能够解析GraphQL请求内容并根据操作类型或字段进行权限控制的解决方案。
解决方案
Apache APISIX提供了Serverless插件,可以完美解决这个问题。Serverless插件允许我们在API网关层执行自定义逻辑,包括解析请求内容并做出相应的访问控制决策。
实现原理
-
请求内容解析:Serverless插件可以获取到完整的GraphQL请求体,从中解析出具体的操作类型(query/mutation/subscription)和请求的字段。
-
动态权限判断:根据解析出的操作信息,我们可以编写自定义逻辑来判断当前请求是否需要认证。例如,可以将某些查询操作(如公开数据查询)加入白名单,而变更操作(mutation)则需要认证。
-
条件式认证:基于判断结果,可以动态决定是否跳过认证插件(如JWT、Keycloak等)的执行。
具体实现示例
以下是一个基于Lua脚本的Serverless插件配置示例,用于实现GraphQL请求的动态权限控制:
{
"serverless": {
"phase": "access",
"functions": [
"return function(conf, ctx)
local core = require('apisix.core')
local method = core.request.get_method()
if method == 'POST' then
local body = core.request.get_body()
local ok, graphql = pcall(core.json.decode, body)
if ok and graphql then
local query = graphql.query or ''
-- 检查是否为白名单中的查询
if query:find('publicQuery') then
-- 跳过认证
ctx.skip_auth = true
end
end
end
end"
]
}
}
最佳实践
-
白名单管理:建议将白名单操作集中管理,可以使用外部配置或数据库存储,便于动态更新。
-
性能考虑:GraphQL请求体可能较大,解析时要注意性能影响,可以考虑缓存解析结果。
-
安全审计:记录所有跳过认证的请求,便于后续安全审计。
-
组合使用:可以结合其他APISIX插件如limit-req、proxy-cache等,构建完整的GraphQL API保护方案。
总结
通过Apache APISIX的Serverless插件,我们可以灵活地实现基于GraphQL请求内容的动态权限控制。这种方法不仅解决了单一端点的权限控制难题,还为GraphQL API的安全管理提供了更多可能性。在实际应用中,开发团队可以根据具体业务需求和安全要求,定制更精细化的访问控制策略。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00