LangGraph项目中状态注入工具的正确使用方法
2025-05-19 08:27:45作者:卓炯娓
在LangGraph项目中开发自定义代理时,状态管理是一个核心功能。许多开发者会遇到如何将Graph状态正确注入到工具函数中的问题。本文将详细介绍这一技术点的正确实现方式。
状态注入的基本原理
LangGraph提供了强大的状态管理机制,允许开发者在工作流的各个节点间共享和传递状态。当我们需要在工具函数中访问这些状态时,必须使用特定的注解方式。
常见错误模式
开发者经常犯的一个典型错误是直接使用自定义状态类作为注解,例如:
async def _request_files_tool(self, file_paths: list[str], state: CustomAgentState) -> List[Tuple[str, str]]:
...
或者尝试使用:
Annotated[dict, CustomAgentState]
这些方式都无法正常工作,会导致状态无法正确注入。
正确的实现方式
正确的做法是使用InjectedState
注解:
from typing import Annotated
from langgraph.types import InjectedState
async def _request_files_tool(
self,
file_paths: list[str],
state: Annotated[dict, InjectedState]
) -> List[Tuple[str, str]]:
...
实现细节解析
-
注解的必要性:
InjectedState
注解告诉LangGraph运行时系统需要将当前状态注入到这个参数中。 -
参数类型:状态参数应声明为
Annotated[dict, InjectedState]
,其中dict
表示状态将以字典形式传递。 -
工具函数定义:无论是使用
StructuredTool
还是BaseTool
,都需要遵循相同的注解规则。
完整示例代码
from typing import Annotated, List, Tuple
from langgraph.graph import StateGraph
from langgraph.types import InjectedState
from langchain.tools.base import StructuredTool
class CustomAgent:
def __init__(self):
self._tools = [
StructuredTool.from_function(
coroutine=self._request_files_tool,
name="request_files_tool",
description="文件请求工具"
)
]
async def _request_files_tool(
self,
file_paths: List[str],
state: Annotated[dict, InjectedState]
) -> List[Tuple[str, str]]:
# 现在可以正确访问state中的内容
folder_path = state.get("folder_path")
# 处理逻辑...
注意事项
-
确保使用的LangGraph版本支持状态注入功能。
-
在工具函数中访问状态字典时,建议使用
.get()
方法并提供默认值,以避免KeyError异常。 -
如果状态结构复杂,可以在工具函数内部将字典转换为自定义状态类实例。
通过正确使用状态注入机制,开发者可以构建更加灵活和强大的LangGraph工作流,实现复杂的业务逻辑和状态管理需求。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648