Sapiens项目中不同尺寸图像在姿态估计推理中的处理方案
问题背景
在使用Sapiens项目的姿态估计功能时,开发者可能会遇到一个常见的技术挑战:当输入文件夹中包含不同尺寸的图像时,系统会抛出"RuntimeError: Trying to resize storage that is not resizable"的错误。这个问题特别出现在使用lite/scripts/demo/torchscript/pose_keypoints17.sh脚本进行批量推理时。
问题本质分析
这个问题的根源在于PyTorch的数据加载机制。当使用DataLoader进行批量处理时,系统默认会尝试将不同尺寸的图像堆叠成一个张量(tensor)。然而,不同尺寸的图像无法直接堆叠,因为它们的维度不匹配。这与Sapiens项目的设计选择有关——项目优先考虑了批量处理性能,而非可变尺寸图像的灵活性。
解决方案
方案一:统一图像尺寸
最直接的解决方案是在预处理阶段将所有图像调整为统一尺寸。这可以通过修改AdhocImageDataset类的_preprocess方法实现:
- 在创建数据集时指定目标尺寸参数
- 预处理阶段自动将图像调整为指定尺寸
- 确保所有输出图像具有相同的维度
这种方法特别适合需要保持批量处理优势的场景,同时解决了尺寸不一致的问题。
方案二:设置批大小为1
对于不需要批量处理的场景,可以将批大小(batch size)设置为1。这样系统会逐个处理图像,避免了不同尺寸图像的堆叠问题。虽然这会牺牲一些处理速度,但可以保持原始图像的尺寸信息。
技术实现细节
在底层实现上,PyTorch的DataLoader使用collate_fn函数来组合批次数据。当遇到不同尺寸的numpy数组时,系统会尝试将它们转换为张量并堆叠。如果尺寸不匹配,就会触发"Trying to resize storage that is not resizable"错误。
对于姿态估计任务,保持图像比例往往很重要。因此,在调整尺寸时,建议采用保持长宽比的缩放方式,必要时进行适当的填充(padding),而不是简单的拉伸变形。
最佳实践建议
- 对于生产环境,建议预处理阶段统一图像尺寸
- 在开发调试阶段,可以使用批大小为1的模式快速验证
- 考虑使用智能裁剪或填充技术,在调整尺寸时保持关键内容
- 对于视频流处理,确保连续帧具有相同尺寸
性能考量
批量处理可以显著提高GPU利用率,因此在可能的情况下,推荐使用统一尺寸的方案。根据实际测试,批处理通常能带来2-5倍的性能提升,具体取决于硬件配置和批大小。
总结
Sapiens项目的姿态估计模块在处理不同尺寸图像时确实存在限制,但通过合理的预处理或配置调整,开发者可以轻松解决这个问题。理解PyTorch的数据加载机制和项目的设计选择,有助于我们做出最适合应用场景的技术决策。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00