Haze项目中的高斯模糊着色器优化实践
2025-07-10 14:18:46作者:裘旻烁
引言
在图像处理领域,高斯模糊是一种常用的图像平滑技术,它通过计算像素周围邻域的加权平均值来实现模糊效果。在chrisbanes/haze项目中,开发者对高斯模糊着色器进行了两项重要的优化,显著提升了性能表现。
优化方案一:线性采样技术
传统的高斯模糊实现需要对每个像素周围的所有邻域像素进行采样计算。例如对于一个半径为N的模糊核,需要进行2N+1次纹理采样。通过采用线性采样技术,我们可以将采样次数减少近一半。
线性采样的核心思想是利用GPU纹理采样的线性插值特性。当我们在纹理坐标上使用非整数偏移时,GPU会自动对相邻像素进行线性插值。例如:
image.eval(float2(1.5, 1.0))
等价于:
0.5 * (image.eval(float2(1.0, 1.0)) + image.eval(float2(2.0, 1.0)))
通过这种技术,我们只需要对奇数偏移位置进行采样,就能同时获取两个像素的加权平均值。优化后的采样模式从原来的连续整数偏移变为间隔的奇数偏移,如-5.5、-3.5、-1.5、0、1.5、3.5、5.5等。
优化方案二:简化高斯函数计算
原始的高斯函数实现包含了一个复杂的归一化分母:
exp(-(x * x) / (2.0 * sigma * sigma)) / (2.0 * PI * sigma * sigma)
经过分析发现,这个分母在后续的标准化处理中会被抵消掉。因此可以简化为:
exp(-(x * x) / (2.0 * sigma * sigma))
这种简化减少了每个像素点的计算量,提高了着色器的执行效率。
优化效果验证
在Pixel 4XL设备上的测试表明,优化后的高斯模糊效果与原始实现视觉上完全一致,但性能得到了显著提升。开发者还计划进一步改进,使模糊半径可以作为参数动态传入,从而消除最大半径限制并减少分支判断。
技术展望
这种优化思路不仅适用于haze项目,也可以推广到其他需要高效实现高斯模糊的场景。未来还可以考虑以下方向:
- 实现可配置的模糊半径参数
- 进一步优化权重计算
- 探索多通道并行处理的可能性
通过持续优化,我们可以为移动设备提供更高效的图像处理解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134