Pearl项目中QuantileRegressionDeepTDLearning的动作维度问题解析
2025-06-28 02:27:39作者:平淮齐Percy
问题背景
在强化学习框架Pearl中,QuantileRegressionDeepTDLearning算法实现时出现了一个关于动作维度处理的潜在问题。当用户尝试使用该算法进行股票交易模拟时,遇到了矩阵乘法维度不匹配的错误,具体表现为"RuntimeError: mat1 and mat2 shapes cannot be multiplied (27x790 and 814x128)"。
问题本质
问题的核心在于QuantileRegressionDeepTDLearning类中对动作维度的处理方式。在当前的实现中,算法直接使用了action_space.n
作为网络的动作维度输入,而实际上对于某些环境(特别是离散动作空间的多维组合情况),应该使用action_space.action_dim
更为合适。
以股票交易场景为例:
- 用户环境有27种可能的动作组合(3^3,对应3种操作:买入、卖出、持有,应用于3种不同股票)
- 但实际的动作维度是3(每个股票的操作选择)
- 状态维度为787
技术细节分析
在QuantileRegressionDeepTDLearning的实现中,网络构建函数如下:
def make_specified_network() -> QuantileQValueNetwork:
assert hidden_dims is not None
return network_type(
state_dim=state_dim,
action_dim=action_space.n, # 这里使用了action_space.n
hidden_dims=hidden_dims,
num_quantiles=num_quantiles,
)
这种实现会导致:
- 当动作空间是多个离散选择的组合时(如3^3=27种组合),网络会错误地将动作维度视为27
- 实际应该将动作维度视为基础动作的维度(本例中为3)
- 这种不匹配导致了后续矩阵乘法时的维度错误
解决方案
Pearl项目团队已经提交了修复方案,主要改进点包括:
- 使用ActionRepresentationModule来正确提取动作维度
- 确保网络构建时使用正确的动作维度表示
- 保持与框架中其他算法的一致性
对于用户而言,解决方案包括:
- 更新到最新版本的Pearl代码
- 确保正确配置ActionRepresentationModule
- 或者可以临时通过自定义网络实例的方式绕过该问题
对分布强化学习的启示
这个问题特别值得注意,因为在分布强化学习(Distributional RL)中:
- 动作维度的处理与其他RL算法有所不同
- Quantile回归方法对网络结构更为敏感
- 正确的维度设置对收敛性和稳定性至关重要
总结
Pearl框架中的QuantileRegressionDeepTDLearning算法在动作维度处理上存在潜在问题,特别是在处理组合动作空间时。项目团队已经修复了这个问题,用户应更新到最新版本或正确配置ActionRepresentationModule。这个问题也提醒我们,在实现强化学习算法时,对动作空间的表示需要特别小心,特别是在处理复杂动作组合的情况下。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0