Doobie SQL片段组合器在DELETE查询中的正确使用方式
2025-07-03 15:50:56作者:管翌锬
Doobie作为Scala生态中优秀的数据库访问库,其SQL片段组合器(fragments)提供了强大的SQL构建能力。最近在使用过程中发现一个值得注意的特性变化:fragments.in方法在DELETE语句中的使用方式需要特别注意。
问题现象
开发者在使用fragments.in组合DELETE查询时,生成的SQL语句会包含多余的括号,导致语法错误。例如以下代码:
(fragments.in(
fr"""DELETE FROM document_share ds
USING document d, user_key uk, identity_user u
WHERE d.id = $documentId
AND ds.document_id = d.id
AND ds.shared_with_user_key_id = uk.id AND uk.user_id = u.id
AND u.org_id = ${userKeys.segmentId} AND u.provided_id """,
userKeys.providedIds
) ++
fr"""RETURNING u.provided_id, u.id""").query
会生成包含多余括号的无效SQL语句。
问题根源
这个行为变化实际上是Doobie 1.0.0-RC3版本引入的有意设计。fragments.in方法默认会为IN表达式添加括号,这是为了确保SQL片段作为独立表达式时的语法正确性。
正确用法
在DELETE语句中使用fragments.in时,应该将其应用于特定的列表达式,而不是整个WHERE子句。正确的写法应该是:
fr"""DELETE FROM document_share ds
USING document d, user_key uk, identity_user u
WHERE d.id = $documentId
AND ds.document_id = d.id
AND ds.shared_with_user_key_id = uk.id AND uk.user_id = u.id
AND u.org_id = ${userKeys.segmentId} AND ${fragments.in(fr"u.provided_id", userKeys.providedIds)}
RETURNING u.provided_id, u.id
"""
设计思考
这种设计体现了Doobie的一个重要理念:SQL片段组合器应该用于构建SQL中的表达式部分,而不是整个语句。这种设计有以下几个优点:
- 语义清晰:明确区分SQL语句结构和表达式部分
- 组合灵活:可以更自由地组合各种SQL片段
- 语法安全:自动处理表达式级别的语法要求
最佳实践
在使用Doobie构建复杂SQL时,建议:
- 将fragments.in等组合器应用于具体的列表达式
- 保持SQL语句的主体结构清晰可见
- 对于复杂的条件组合,可以分步骤构建各个条件片段
- 充分利用Scala的字符串插值特性提高可读性
通过遵循这些原则,可以编写出既安全又易读的Doobie查询代码。
总结
Doobie的SQL片段组合器是强大的工具,但需要理解其设计意图才能正确使用。特别是在处理DELETE等DML语句时,要注意将组合器应用于适当的表达式位置,而不是整个语句片段。这种用法不仅解决了语法问题,也使代码结构更加清晰合理。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873