Playwright测试中重复截图问题的分析与解决方案
问题背景
在使用Playwright测试框架进行自动化测试时,开发人员发现当测试失败时,系统会生成重复的截图文件。具体表现为:在测试用例中手动创建了一个新页面(Page)对象,当测试失败时,HTML报告中会出现三个截图文件,而预期应该只有两个截图(每个页面各一个)。
问题复现
通过以下测试代码可以复现该问题:
import { expect, Page, test } from '@playwright/test';
test.describe('Suite', () => {
let secondPage: Page;
test.beforeAll(async ({ browser }) => {
secondPage = await browser.newPage();
});
test.afterAll(async () => {
await secondPage.close();
});
test('Should fail', async ({ page }) => {
await secondPage.goto('https://playwright.dev/');
await page.goto('https://www.google.com/');
await expect(page.locator('[data-test="lol"]')).toBeVisible({ timeout: 1000 });
await expect(secondPage.locator('[data-test="lol"]')).toBeVisible({ timeout: 1000 });
});
});
问题原因分析
经过深入分析,发现这个问题与Playwright的截图机制和测试生命周期管理有关:
-
截图触发机制:当配置
screenshot: 'only-on-failure'时,Playwright会在测试失败时自动捕获每个页面的截图。 -
页面关闭行为:Playwright会在每个页面关闭前捕获截图,作为一种预防措施,以防测试最终失败。
-
测试生命周期:
beforeAll和afterAll钩子函数的行为类似于测试用例,它们的错误会被归因于测试序列中的第一个或最后一个测试。 -
双重捕获:在测试失败的情况下,系统会:
- 首先在页面关闭时捕获截图
- 然后在测试结束时再次捕获截图
- 对于
afterAll钩子,系统会额外捕获一次截图
解决方案
针对这个问题,可以考虑以下几种解决方案:
-
调整测试结构:避免在测试中手动创建页面对象,尽量使用测试参数提供的页面对象。
-
自定义截图逻辑:关闭自动截图功能,在关键位置手动添加截图逻辑。
-
等待框架修复:Playwright团队可能会在后续版本中优化这一行为。
最佳实践建议
-
对于简单的测试场景,优先使用测试参数提供的页面对象。
-
如果确实需要创建额外的页面对象,考虑在测试用例内部创建和管理,而不是在
beforeAll中创建。 -
对于关键测试步骤,可以手动添加截图点,而不是完全依赖自动截图功能。
-
定期检查测试报告中的截图文件,确保没有不必要的重复截图消耗存储空间。
总结
Playwright的自动截图功能虽然方便,但在特定场景下可能会出现重复截图的问题。理解其背后的工作机制有助于我们更好地组织测试代码,避免不必要的资源浪费。通过调整测试结构或采用自定义截图策略,可以有效解决这一问题。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00