AWS SDK for JavaScript v3 中 Resource Groups 服务的 ListGroups API 配置类型问题解析
问题背景
在使用 AWS SDK for JavaScript v3 中的 Resource Groups 服务时,开发者在调用 ListGroups API 时遇到了一个关于配置类型过滤器的文档与实际行为不一致的问题。具体表现为文档中列出的 AWS::AppRegistry::ApplicationResourceGroups 配置类型在实际使用时会导致 API 返回错误。
问题重现与分析
当开发者按照文档说明,在 ListGroups 命令的 Filters 参数中使用 AWS::AppRegistry::ApplicationResourceGroups 作为 configuration-type 的值时,API 会返回以下错误:
BadRequestException: Filters not valid: One or more filter values are not supported: AWS::AppRegistry::ApplicationResourceGroups
经过深入测试和验证,发现正确的配置类型值应该是 AWS::AppRegistry::ApplicationResourceGroup(注意结尾是单数形式)。使用这个正确的值后,API 调用能够成功执行并返回预期的结果。
技术细节
Resource Groups 服务的 ListGroups API 允许通过 Filters 参数来筛选返回的资源组。其中 configuration-type 过滤器用于按资源组的配置类型进行筛选。正确的配置类型值包括:
AWS::EC2::HostManagementAWS::AppRegistry::ApplicationResourceGroup(正确值)- 其他支持的配置类型
值得注意的是,文档中列出的 AWS::AppRegistry::ApplicationResourceGroups(复数形式)实际上是不支持的,这导致了 API 调用失败。
解决方案
开发者应该使用以下正确的配置类型值:
const input = {
Filters: [
{
Name: "configuration-type",
Values: [
"AWS::AppRegistry::ApplicationResourceGroup" // 注意是单数形式
]
}
]
};
最佳实践建议
- API 调用验证:在使用新的 API 参数值时,建议先进行小规模测试验证
- 错误处理:对于 ListGroups API 调用,应该妥善处理可能出现的 BadRequestException
- 文档交叉验证:当遇到文档与实际行为不一致时,可以参考多个来源的文档或进行实际测试
- SDK 更新:定期更新 AWS SDK 版本以获取最新的修复和改进
总结
AWS SDK for JavaScript v3 的 Resource Groups 服务中,ListGroups API 的 configuration-type 过滤器存在文档与实际实现不一致的问题。开发者应该使用 AWS::AppRegistry::ApplicationResourceGroup(单数形式)而非文档中列出的复数形式。这个问题已经得到 AWS 团队的确认,相关文档将会更新。在实际开发中,遇到类似问题时,建议通过实际测试验证参数值的有效性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00