解决huggingface_hub中使用xet存储后端下载文件时的DNS错误问题
在huggingface_hub项目中,当用户尝试使用xet存储后端下载模型文件时,可能会遇到DNS解析错误的问题。本文将深入分析这一问题的成因,并提供多种解决方案。
问题现象
用户在使用huggingface_hub的API下载存储在xet后端的模型文件时,会遇到DNS解析失败的错误。错误日志显示系统无法解析cas-server.xethub.hf.co
域名,导致下载中断。值得注意的是,使用LFS或常规git存储的文件则能正常下载。
问题根源分析
经过技术团队深入调查,发现该问题主要由以下几个因素导致:
-
网络配置不完整:用户仅通过代码为requests库设置了网络代理,但xet-core的http_client模块并不使用requests库发送请求
-
DNS搜索域问题:在某些企业网络环境中,DNS会自动附加企业域名(如
.corp.example.com
),导致域名解析失败 -
网络环境限制:部分企业网络对特定域名的访问有特殊限制
解决方案
方法一:全局网络设置
最可靠的解决方案是通过系统环境变量设置全局网络代理:
export HTTP_PROXY="http://your.network.address:port"
export HTTPS_PROXY="http://your.network.address:port"
这种方法确保所有网络请求(包括xet-core的http_client)都能通过代理访问外部资源。
方法二:降级hf_xet版本
如果暂时无法修改网络配置,可以尝试降级hf_xet版本:
pip install --force-reinstall -v "hf_xet==1.1.2"
方法三:调整系统参数
在某些情况下,增加文件描述符限制可能解决问题:
ulimit -Sn 4096 # 临时增加文件描述符限制
方法四:限制并发下载数
减少并发下载数可以降低网络负载:
export HF_XET_MAX_CONCURRENT_DOWNLOADS=2
技术细节
xet-core的http_client模块使用Rust的reqwest库进行HTTP请求,而非Python的requests库。这是为什么仅配置requests代理无效的原因。当遇到网络问题时,该模块会自动重试,日志中可以看到5次重试的间隔时间会逐渐增加。
最佳实践建议
- 在企业网络环境中,优先使用系统环境变量配置网络设置
- 保持hf_xet库的最新版本,以获得最佳兼容性
- 对于复杂网络环境,可以联系网络管理员检查DNS配置
- 如果问题持续存在,可以暂时卸载hf_xet,系统会回退到常规HTTP下载方式
总结
huggingface_hub项目中的xet存储后端提供了高效的模型文件分发能力,但在特定网络环境下可能会遇到DNS解析问题。通过正确配置网络设置或调整相关参数,大多数情况下都能顺利解决。技术团队也在持续优化相关代码,以提升在各种网络环境下的兼容性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









