解决huggingface_hub中使用xet存储后端下载文件时的DNS错误问题
在huggingface_hub项目中,当用户尝试使用xet存储后端下载模型文件时,可能会遇到DNS解析错误的问题。本文将深入分析这一问题的成因,并提供多种解决方案。
问题现象
用户在使用huggingface_hub的API下载存储在xet后端的模型文件时,会遇到DNS解析失败的错误。错误日志显示系统无法解析cas-server.xethub.hf.co域名,导致下载中断。值得注意的是,使用LFS或常规git存储的文件则能正常下载。
问题根源分析
经过技术团队深入调查,发现该问题主要由以下几个因素导致:
-
网络配置不完整:用户仅通过代码为requests库设置了网络代理,但xet-core的http_client模块并不使用requests库发送请求
-
DNS搜索域问题:在某些企业网络环境中,DNS会自动附加企业域名(如
.corp.example.com),导致域名解析失败 -
网络环境限制:部分企业网络对特定域名的访问有特殊限制
解决方案
方法一:全局网络设置
最可靠的解决方案是通过系统环境变量设置全局网络代理:
export HTTP_PROXY="http://your.network.address:port"
export HTTPS_PROXY="http://your.network.address:port"
这种方法确保所有网络请求(包括xet-core的http_client)都能通过代理访问外部资源。
方法二:降级hf_xet版本
如果暂时无法修改网络配置,可以尝试降级hf_xet版本:
pip install --force-reinstall -v "hf_xet==1.1.2"
方法三:调整系统参数
在某些情况下,增加文件描述符限制可能解决问题:
ulimit -Sn 4096 # 临时增加文件描述符限制
方法四:限制并发下载数
减少并发下载数可以降低网络负载:
export HF_XET_MAX_CONCURRENT_DOWNLOADS=2
技术细节
xet-core的http_client模块使用Rust的reqwest库进行HTTP请求,而非Python的requests库。这是为什么仅配置requests代理无效的原因。当遇到网络问题时,该模块会自动重试,日志中可以看到5次重试的间隔时间会逐渐增加。
最佳实践建议
- 在企业网络环境中,优先使用系统环境变量配置网络设置
- 保持hf_xet库的最新版本,以获得最佳兼容性
- 对于复杂网络环境,可以联系网络管理员检查DNS配置
- 如果问题持续存在,可以暂时卸载hf_xet,系统会回退到常规HTTP下载方式
总结
huggingface_hub项目中的xet存储后端提供了高效的模型文件分发能力,但在特定网络环境下可能会遇到DNS解析问题。通过正确配置网络设置或调整相关参数,大多数情况下都能顺利解决。技术团队也在持续优化相关代码,以提升在各种网络环境下的兼容性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00