AIMET 2.0.0发布:深度学习模型量化工具的重大升级
2025-06-20 04:14:40作者:郜逊炳
项目简介
AIMET(AI Model Efficiency Toolkit)是由高通开发的开源工具库,专注于深度学习模型的量化、压缩和优化。它为研究人员和工程师提供了一套完整的工具链,帮助他们在保持模型精度的同时,显著减少模型大小和计算资源需求,从而实现在边缘设备上的高效部署。
2.0.0版本核心更新
文档体系重构
2.0.0版本对文档进行了全面重构,采用Furo主题重新设计了文档结构,使内容组织更加清晰。新文档不仅详细说明了AIMET的各种操作流程,还新增了量化模型部署到高通AI引擎和AI Hub的完整指南,为开发者提供了端到端的解决方案。
PyTorch API重大升级
本次发布最显著的改变是PyTorch API的重大重构:
- API版本迁移:原v1 API已迁移至aimet_torch.v1子包,aimet_torch.v2成为默认API。这种设计既保证了新特性的引入,又确保了向后兼容性。
- 手动混合精度配置器(Beta):新增的混合精度配置工具简化了模型在不同精度下的配置过程,使开发者能够更灵活地在精度和性能之间取得平衡。
ONNX优化改进
针对ONNX模型的支持也得到显著增强:
- 初始化性能优化:QuantizationSimModel的初始化延迟得到显著改善,提升了大规模模型的处理效率。
- 图表示对齐:ConnectedGraph现在能更准确地反映ONNX图结构,提高了模型分析和优化的可靠性。
- Adaround和BN折叠修复:修复了这两个关键量化技术中的若干问题,提升了量化效果。
技术细节与升级建议
PyTorch用户升级指南
对于使用PyTorch的开发者,虽然2.0.0版本保持了API的向后兼容性,但建议检查是否使用了QuantizationSimModel的低级组件。如果项目中有相关代码,需要参考迁移指南进行调整。新版本的手动混合精度配置器特别适合需要精细控制各层精度的应用场景。
ONNX性能优化
ONNX用户将直接受益于初始化性能的提升,特别是处理复杂模型时。新的图表示对齐使得模型分析和调试更加直观,建议开发者重新评估现有模型的量化效果。
安装选项
AIMET 2.0.0提供了针对不同框架和硬件环境的多个安装包:
- PyTorch支持:提供GPU(CUDA 12.1)和CPU版本,基于PyTorch 2.1和Python 3.10
- ONNX支持:提供GPU(CUDA 11.8)和CPU版本,基于ONNX 1.16
- TensorFlow支持:提供GPU(CUDA 11.8)和CPU版本,基于TensorFlow 2.10
开发者应根据目标部署环境选择合适的安装包,特别注意CUDA版本与本地环境的兼容性。
总结
AIMET 2.0.0标志着该项目的一个重要里程碑,特别是在PyTorch支持方面实现了API的重大演进。新版本不仅提升了工具的性能和稳定性,还通过改进的文档和新增的混合精度支持,大大降低了深度学习模型量化的门槛。对于需要在边缘设备上部署高效模型的开发者来说,这次升级提供了更强大、更易用的工具集。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669