AIMET 2.0.0发布:深度学习模型量化工具的重大升级
2025-06-20 04:32:32作者:郜逊炳
项目简介
AIMET(AI Model Efficiency Toolkit)是由高通开发的开源工具库,专注于深度学习模型的量化、压缩和优化。它为研究人员和工程师提供了一套完整的工具链,帮助他们在保持模型精度的同时,显著减少模型大小和计算资源需求,从而实现在边缘设备上的高效部署。
2.0.0版本核心更新
文档体系重构
2.0.0版本对文档进行了全面重构,采用Furo主题重新设计了文档结构,使内容组织更加清晰。新文档不仅详细说明了AIMET的各种操作流程,还新增了量化模型部署到高通AI引擎和AI Hub的完整指南,为开发者提供了端到端的解决方案。
PyTorch API重大升级
本次发布最显著的改变是PyTorch API的重大重构:
- API版本迁移:原v1 API已迁移至aimet_torch.v1子包,aimet_torch.v2成为默认API。这种设计既保证了新特性的引入,又确保了向后兼容性。
- 手动混合精度配置器(Beta):新增的混合精度配置工具简化了模型在不同精度下的配置过程,使开发者能够更灵活地在精度和性能之间取得平衡。
ONNX优化改进
针对ONNX模型的支持也得到显著增强:
- 初始化性能优化:QuantizationSimModel的初始化延迟得到显著改善,提升了大规模模型的处理效率。
- 图表示对齐:ConnectedGraph现在能更准确地反映ONNX图结构,提高了模型分析和优化的可靠性。
- Adaround和BN折叠修复:修复了这两个关键量化技术中的若干问题,提升了量化效果。
技术细节与升级建议
PyTorch用户升级指南
对于使用PyTorch的开发者,虽然2.0.0版本保持了API的向后兼容性,但建议检查是否使用了QuantizationSimModel的低级组件。如果项目中有相关代码,需要参考迁移指南进行调整。新版本的手动混合精度配置器特别适合需要精细控制各层精度的应用场景。
ONNX性能优化
ONNX用户将直接受益于初始化性能的提升,特别是处理复杂模型时。新的图表示对齐使得模型分析和调试更加直观,建议开发者重新评估现有模型的量化效果。
安装选项
AIMET 2.0.0提供了针对不同框架和硬件环境的多个安装包:
- PyTorch支持:提供GPU(CUDA 12.1)和CPU版本,基于PyTorch 2.1和Python 3.10
- ONNX支持:提供GPU(CUDA 11.8)和CPU版本,基于ONNX 1.16
- TensorFlow支持:提供GPU(CUDA 11.8)和CPU版本,基于TensorFlow 2.10
开发者应根据目标部署环境选择合适的安装包,特别注意CUDA版本与本地环境的兼容性。
总结
AIMET 2.0.0标志着该项目的一个重要里程碑,特别是在PyTorch支持方面实现了API的重大演进。新版本不仅提升了工具的性能和稳定性,还通过改进的文档和新增的混合精度支持,大大降低了深度学习模型量化的门槛。对于需要在边缘设备上部署高效模型的开发者来说,这次升级提供了更强大、更易用的工具集。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19