Umijs/Mako 项目中 RSC 客户端打包的 use server 处理优化
在 Umijs/Mako 项目的 React Server Components (RSC) 实现中,开发团队最近针对客户端打包时遇到的 use server 指令处理问题进行了优化。这项改进为开发者提供了更灵活的配置选项,能够更好地适应不同的项目场景。
问题背景
在 React Server Components 架构中,use server 指令通常用于标记只能在服务端执行的组件。在标准的 RSC 实现中,客户端打包时遇到包含 use server 的组件通常会抛出错误,因为这表明有服务端组件被错误地包含在客户端打包流程中。
然而,在某些特殊场景下,特别是历史遗留项目中,入口页面可能要求配置 use server 指令。同时,项目的 fallback 方案会在客户端打包时通过 await import() 动态加载这些入口文件。这种情况下,客户端打包遇到 use server 指令实际上是合理的业务需求,而非错误。
解决方案
为了解决这一矛盾,Umijs/Mako 团队在 RSC 客户端打包配置中新增了一个选项 logServerComponent。这个选项允许开发者根据项目需求灵活配置对 use server 指令的处理方式。
配置方式如下:
rscClient: {
logServerComponent: 'error' | 'ignore' // 默认为 'error'
}
error(默认值):保持原有行为,当客户端打包遇到use server指令时抛出错误ignore:忽略use server指令,允许打包继续进行
技术实现分析
这项改进的核心在于为打包过程增加了上下文感知能力。传统的 RSC 实现通常采用一刀切的方式处理 use server 指令,而 Umijs/Mako 的新方案则:
- 识别打包环境(客户端/服务端)
- 根据配置决定对
use server指令的处理策略 - 在客户端打包时,如果配置为
ignore,则跳过相关错误检查
这种设计既保持了 RSC 架构的严谨性,又为特殊场景提供了必要的灵活性。
适用场景
这项优化特别适合以下情况:
- 渐进式迁移项目:从传统架构逐步迁移到 RSC 架构的项目
- 混合渲染应用:同时需要服务端和客户端渲染的复杂应用
- 特殊入口需求:某些入口文件需要在不同环境下表现不同的行为
最佳实践建议
对于大多数新项目,建议保持默认的 error 设置,这有助于及早发现潜在的组件使用问题。只有在确实需要时才应使用 ignore 选项,并且最好添加清晰的注释说明原因。
对于从传统架构迁移的项目,可以:
- 初期使用
ignore选项保证兼容性 - 逐步重构代码,消除对
ignore选项的依赖 - 最终切换回默认的
error设置
总结
Umijs/Mako 的这项改进展示了优秀开源项目对实际开发需求的快速响应能力。通过提供可配置的 use server 处理策略,项目既保持了架构的规范性,又为复杂场景提供了必要的灵活性。这种平衡是框架设计中的典范,值得其他项目借鉴。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00