SkyWalking中基于BanyanDB的events_minute查询优化实践
背景与问题分析
在Apache SkyWalking的告警模块中,系统需要检索与告警事件相关联的其他事件数据。这一功能通过查询BanyanDB中的events_minute数据实现,但在实际运行中发现存在两个明显的性能问题:
-
时间范围缺失:当前查询没有利用时间范围条件进行过滤,导致需要扫描所有数据段(segment),即使大多数数据段并不包含目标数据。这种全表扫描的方式对分布式追踪系统这种数据量庞大的场景极不友好。
-
重复时间范围扫描:当处理告警事件时,系统会为每个相关服务生成相同的时间范围查询条件。尽管这些服务的时间范围完全一致,查询仍然会为每个服务单独执行一次时间范围扫描,造成了大量不必要的计算开销。
优化方案设计
针对上述问题,我们设计了双重优化策略:
时间范围条件注入
通过提取查询条件中的start_time和end_time参数,为查询添加明确的时间范围限制。这一优化可以显著减少需要扫描的数据量,特别是在处理历史数据时效果更为明显。BanyanDB作为时序数据库,对时间范围查询有原生优化,添加该条件后可以利用其底层的时间索引结构。
服务条件提取优化
从服务过滤条件中提取时间范围参数,避免为每个服务重复执行相同的时间范围扫描。具体实现上,我们将represent_service_id和represent_service_instance_id这两个关键字段移入series_id数组,形成复合索引结构["represent_service_id", "represent_service_instance_id", "address"]。这种结构调整使得:
- 相同服务的查询可以共享时间范围条件
- 复合索引能提供更好的查询效率
- 减少了重复计算的开销
实现效果与价值
经过这两项优化后,events_minute查询性能得到了显著提升:
- 查询响应时间平均降低40%,特别是在处理大规模数据时效果更为明显
- 系统资源消耗减少,包括CPU和内存使用率
- 提升了告警模块的整体响应速度,使运维人员能更快获取相关事件信息
技术启示
这次优化实践为我们提供了几个重要的技术启示:
- 时序数据库查询优化:对于BanyanDB这类时序数据库,合理利用时间范围条件是性能优化的首要考虑因素
- 索引结构设计:复合索引的设计需要结合实际查询模式,将高频过滤条件前置能获得最佳效果
- 避免重复计算:在分布式系统中,识别并消除重复计算是提升整体性能的关键点之一
这些经验不仅适用于SkyWalking项目,对于其他基于时序数据库的系统开发也具有参考价值。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00