hello-webxr 的项目扩展与二次开发
2025-05-21 13:06:30作者:伍希望
项目的基础介绍
hello-webxr 是一个开源项目,旨在庆祝 WebXR 规范在 2019 年底发布。该项目是一个 WebXR 演示,包含多个小型体验,非常适合测试虚拟现实中的各种交互和场景。对于初学者来说,这是一个不错的入门点,而对于网页开发者而言,他们可以在此找到许多可重用和学习的元素。
项目的核心功能
hello-webxr 展示了以下几个核心功能:
- 多个虚拟现实体验的集成。
- 交互式元素的实现,例如物体抓取和放置。
- 360 度全景图的展示。
- 经典绘画和摄影模型的展示。
项目使用了哪些框架或库?
该项目主要使用了以下框架和库:
- JavaScript:用于开发 WebXR 应用的主要编程语言。
- HTML:构建网页结构和布局。
- GLSL:用于着色器编程,为 3D 场景添加视觉效果。
- Python:用于项目的辅助脚本,例如着色器打包工具。
项目的代码目录及介绍
项目的代码目录结构如下:
assets/:包含项目所需的资源文件,如图像、模型等。res/:存放着色器和其他资源文件。src/:项目的主要 JavaScript 代码目录。.gitignore:定义了 Git 忽略的文件和目录。LICENSE:项目使用的 MIT 许可证。README.md:项目说明文件。bundle.js:打包后的 JavaScript 文件。index.html:项目的入口 HTML 文件。package-lock.json:锁定项目依赖的版本。package.json:定义项目依赖和配置。packshaders.py:着色器打包脚本。webpack.config.js:webpack 配置文件。
对项目进行扩展或者二次开发的方向
- 新增体验:可以增加更多的虚拟现实体验,例如教育内容、游戏或者模拟训练等。
- 优化交互:改进现有的交互方式,或者引入新的交互机制,提升用户体验。
- 自定义内容:允许用户上传自己的 3D 模型或全景图,创建个性化的虚拟现实环境。
- 性能优化:针对不同的设备和平台进行性能优化,确保流畅的运行体验。
- 多平台支持:扩展项目以支持更多的平台和设备,例如移动设备或 VR 头盔。
- 社区合作:鼓励社区贡献,共同开发新的特性和体验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
316
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K