finetune项目使用教程
2025-04-18 09:42:45作者:龚格成
1. 项目介绍
finetune 是一个开源库,允许用户利用最先进的预训练NLP模型进行广泛的下游任务。目前,finetune 支持以下模型的 TensorFlow 实现:
- BERT
- RoBERTa
- GPT
- GPT2
- TextCNN
- Temporal Convolution Network (TCN)
- DistilBERT
finetune 提供了与 scikit-learn 类似的接口,使得模型的微调变得简单快捷。
2. 项目快速启动
首先,确保您的环境中已安装 TensorFlow。以下是快速启动 finetune 的步骤:
# 安装 finetune
pip3 install finetune
# 导入必要的模块
from finetune import Classifier
# 创建一个分类器实例
model = Classifier()
# 加载预训练模型
model.fit(trainX, trainY)
# 保存模型
model.save('my_finetuned_model')
# 加载模型
model = Classifier.load('my_finetuned_model')
# 进行预测
predictions = model.predict(testX)
确保您已经准备好了训练数据 trainX 和 trainY,以及测试数据 testX。
3. 应用案例和最佳实践
以下是一些使用 finetune 的应用案例和最佳实践:
文本分类
from finetune import Classifier
# 创建一个文本分类器
classifier = Classifier()
# 训练模型
classifier.fit(train_data['text'], train_data['label'])
# 进行预测
predictions = classifier.predict(test_data['text'])
命名实体识别
from finetune import SequenceLabeler
# 创建一个序列标注器
labeler = SequenceLabeler()
# 训练模型
labeler.fit(train_data['text'], train_data['tags'])
# 进行预测
predictions = labeler.predict(test_data['text'])
多任务学习
from finetune import MultiTask
# 创建一个多任务模型
multitask = MultiTask()
# 训练模型
multitask.fit(train_data['text'], {'task1': train_data['label1'], 'task2': train_data['label2']})
# 进行预测
predictions = multitask.predict(test_data['text'])
4. 典型生态项目
finetune 的生态中包括了多种类型的扩展项目,这些项目可以帮助用户更好地集成和使用 finetune:
finetune-transformers:整合了 Hugging Face 的 Transformers 库,使用户可以方便地使用更多的预训练模型。finetune-datasets:提供了多种数据集的加载和预处理功能,以方便用户进行模型的训练和测试。finetune-deployment:为 finetune 模型提供了部署工具,帮助用户将模型部署到生产环境。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130