深度学习助力韩文OCR:项目介绍与使用教程
2025-04-21 15:14:27作者:齐添朝
1. 项目介绍
本项目是基于深度学习的韩文OCR(Optical Character Recognition,光学字符识别)研究和实现。韩文OCR的研究相对较少,且缺乏官方数据集,本项目通过生成韩文句子图像数据集,并利用这些数据训练了多种深度学习模型,以提高韩文OCR的识别性能。研究不仅关注了单个字符的识别,还将OCR的应用范围扩展到了整个句子,以适应实际文档图像的复杂场景。
2. 项目快速启动
环境准备
在开始之前,你需要安装以下依赖:
# 安装Python依赖
pip install -r requirements.txt
# 下载并添加韩文字体和字典
# 字体下载链接:[字体下载地址]
# 字典下载链接:[字典下载地址]
数据生成
生成训练和验证数据集:
# 生成基本数据集
cd data && ./create_gt_file.sh basic
# 根据生成的gt文件创建lmdb数据集
python3 data/create_lmdb_dataset.py --inputPath data/generator/TextRecognitionDataGenerator/ --gtFile data/gt_basic.txt --outputPath data/data_lmdb_release/training
模型训练
使用以下命令开始训练模型:
# 训练模型示例
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/train.py --train_data data/data_lmdb_release/training --valid_data data/data_lmdb_release/validation --select_data basic-skew --batch_ratio 0.5-0.5 --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction Attn --data_filtering_off --batch_max_length 50 --workers 4
模型评估
评估模型性能:
# 评估模型示例
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/test.py --eval_data data/data_lmdb_release/evaluation --benchmark_all_eval --Transformation TPS --FeatureExtraction VGG --SequenceModeling None --Prediction Attn --saved_model saved_models/TPS-VGG-None-Attn-Seed1111/best_accuracy.pth --data_filtering_off --workers 4
演示
运行演示脚本,查看模型效果:
# 演示模型示例
CUDA_VISIBLE_DEVICES=0 python3 deep-text-recognition-benchmark/demo.py --Transformation TPS --FeatureExtraction VGG --SequenceModeling BiLSTM --Prediction Attn --image_folder data/demo_image/ --saved_model deep-text-recognition-benchmark/saved_models/TPS-VGG-BiLSTM-Attn-Seed9998/best_accuracy.pth
3. 应用案例和最佳实践
- 数据增强:为了提高模型的鲁棒性,可以在训练时使用图像扭曲、模糊等数据增强技术。
- 模型选择:根据不同的应用场景,选择合适的模型结构和超参数,以达到最佳性能。
- 性能评估:使用标准的数据集进行性能评估,确保模型在实际应用中能够达到预期的效果。
4. 典型生态项目
- TextRecognitionDataGenerator:用于生成文本识别数据集的工具。
- deep-text-recognition-benchmark:深度文本识别的基准测试工具,用于评估和比较不同的OCR模型。
以上是本项目的基本介绍和使用教程,希望对您的韩文OCR研究和应用有所帮助。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K