首页
/ GlobalMLBuildingFootprints数据集常见问题解答:从数据格式到使用限制

GlobalMLBuildingFootprints数据集常见问题解答:从数据格式到使用限制

2026-02-05 04:45:53作者:翟江哲Frasier

GlobalMLBuildingFootprints是一个全球建筑足迹数据集,通过卫星 imagery提取了超过14亿个建筑轮廓,覆盖全球多个地区,数据格式为GeoJSONL,适用于城市规划、灾害响应等多种场景。本文将解答关于该数据集的常见问题,帮助用户快速上手使用。

一、数据集基本信息

1.1 数据规模与覆盖范围

该数据集包含14亿个建筑足迹,覆盖全球多个国家和地区,最新更新于2025年2月,新增了740万建筑足迹和240万高度估计数据,主要集中在法国和美国。通过全球覆盖地图可以直观看到数据分布情况:

GlobalMLBuildingFootprints全球覆盖地图 图1:GlobalMLBuildingFootprints数据集全球覆盖范围示意图,显示了各地区的建筑足迹分布密度

1.2 数据格式说明

数据以行分隔的GeoJSON(GeoJSONL)格式存储,文件扩展名为.csv.gz。虽然扩展名为.csv.gz,但实际内容是GeoJSONL格式,需要特殊处理才能在GIS工具中使用。项目提供了scripts/make-gis-friendly.py脚本,可将文件转换为GIS友好格式。

二、数据获取与使用

2.1 如何获取数据集?

  1. 克隆仓库:
git clone https://gitcode.com/gh_mirrors/gl/GlobalMLBuildingFootprints
  1. 查看dataset-links.csv获取各地区数据下载链接,该文件包含超过19k条记录,按国家和quadkey分区。

2.2 如何处理大型数据文件?

部分数据文件体积较大,但采用行分隔格式存储,可使用并行处理工具如Spark或Dask进行处理。项目提供了scripts/read-files.py示例,展示如何高效读取大型文件。

三、数据内容详解

3.1 建筑足迹样例

数据集包含精确的建筑轮廓信息,以下是卫星图像与建筑足迹叠加的示例:

建筑足迹样例 图2:卫星图像上叠加的建筑足迹示例,黄色边框标注了检测到的建筑物轮廓

3.2 建筑高度数据

部分建筑提供高度估计值,单位为米,无高度估计的建筑以-1表示。高度覆盖范围如下:

建筑高度覆盖地图 图3:GlobalMLBuildingFootprints数据集建筑高度估计覆盖范围,紫色越深表示高度数据越密集

3.3 置信度评分

2023年12月起,新发布的建筑足迹包含0-1的置信度评分,表示检测可信度,值越高可信度越高。2023年12月前的数据置信度值为-1。

四、技术细节

4.1 数据坐标系

数据集采用EPSG: 4326坐标系(WGS84),这是GIS应用中常用的地理坐标系。

4.2 数据质量指标

不同地区的建筑检测精度有所差异,以下是主要地区的精度指标:

地区 精确率 召回率
非洲 94.4% 70.9%
欧洲 94.3% 85.9%
中东 95.7% 85.4%
南美洲 95.4% 78.0%

4.3 数据生成方法

建筑提取过程分为两个阶段:

  1. 语义分割:使用深度神经网络识别卫星图像中的建筑像素
  2. 多边形化:将建筑像素转换为多边形轮廓

五、使用限制与注意事项

5.1 许可协议

数据采用ODbL协议授权,使用时需遵守Open Data Commons Open Database License (ODbL)条款。

5.2 OpenStreetMap导入建议

不建议直接将数据导入OpenStreetMap,应先与当地社区讨论,检查数据质量,并遵循OSM导入指南,避免覆盖已有贡献者的工作。

5.3 数据缺失原因

部分区域可能没有数据,主要原因包括:

  • 图像拍摄时间早于2014年
  • 检测概率低(如偏远地区)
  • 图像处理过程中的过滤

六、常见问题解答

Q: 数据的时间范围是什么?

A: 建筑足迹提取基于2014-2024年间的卫星图像,包括Maxar、Airbus和IGN France等来源的 imagery。

Q: 是否会有更多地区的数据发布?

A: 该项目是持续进行的工作,可能会有更多地区的数据发布。同时可关注其他相关项目,如USBuildingFootprints、AustraliaBuildingFootprints等。

Q: 如何处理数据中的错误?

A: 数据存在一定的误检率(约1-2%),使用时建议结合实地验证,特别是在密集 urban 区域。

通过本文的解答,相信您对GlobalMLBuildingFootprints数据集有了全面的了解。如需进一步帮助,可参考项目中的示例脚本和文档,开始您的数据分析工作!

登录后查看全文
热门项目推荐
相关项目推荐