Grafbase网关0.38.0版本发布:增强型子图安全与数据派生能力
Grafbase是一个开源的GraphQL网关项目,旨在为开发者提供高性能、可扩展的GraphQL API服务。该项目通过聚合多个数据源(子图)并提供一个统一的GraphQL接口,简化了复杂数据系统的构建过程。最新发布的0.38.0版本带来了多项重要改进,特别是在安全配置和数据派生能力方面的增强。
子图级mTLS配置支持
0.38.0版本引入了针对每个子图的独立mTLS(双向TLS)配置能力,这是企业级安全特性的重要补充。mTLS不仅验证服务器身份,还要求客户端提供证书进行身份验证,为服务间通信提供了更强的安全保障。
开发者现在可以为每个子图配置:
- 根CA证书或证书链(通过
root.certificate
指定路径) - 客户端身份文件(包含PEM编码的证书和PKCS#8格式私钥)
- 开发环境专用的
allow_invalid_certs
标志
特别值得注意的是,当使用自签名证书时,证书的SAN(Subject Alternative Name)扩展必须包含主机名信息。此外,私钥格式支持RSA、SEC1椭圆曲线和PKCS#8标准,为不同安全需求提供了灵活性。
增强的@derive指令功能
数据派生是GraphQL API设计中的重要模式,0.38.0版本对@derive
指令进行了显著增强:
-
列表派生支持:现在可以直接派生关联数据集合,例如
comments: [Comment!]! @derive
会自动根据commentIds
列表获取所有关联评论。 -
显式映射控制:通过结合
@is
指令,可以实现精确的字段映射控制。例如:comments: [Comment!]! @derive @is(field: "commentIds[{ id: . }]")
这种语法特别适合处理复合键场景,如多仓库库存管理系统中的关联查询。
-
完整功能支持:派生字段现在全面支持
skip/include
指令、授权规则和连接查询,确保了功能完整性。
查询引擎与核心架构改进
底层查询引擎针对派生字段进行了多项优化:
- 改进了查询计划生成逻辑,确保
@is
指令定义的派生字段能正确解析 - 增强了序列化/反序列化处理,保证派生字段与原始数据的正确对应
- 完善了
skip/include
指令在派生上下文中的处理逻辑
这些改进使得派生字段在查询计划中的行为更加可预测,性能更优。
灵活的CORS配置
跨域资源共享(CORS)配置获得了更强大的模式匹配能力:
- 支持glob模式匹配(如
https://*.example.com
) - 保持向后兼容的同时,新增
"*"
通配符支持 - 简化了单一起源的配置语法
这使得API网关能够更灵活地适应各种前端部署场景,从开发环境到生产环境都能提供恰当的跨域策略。
多平台Docker支持
构建系统现在生成了包含arm64架构的Docker镜像,这意味着:
- 开发者可以在苹果M系列芯片的Mac上获得更好的本地开发体验
- 服务器部署可以充分利用ARM架构的能效优势
- 统一了不同硬件平台上的部署体验
总结
Grafbase网关0.38.0版本通过引入子图级mTLS配置、增强的派生字段功能以及灵活的CORS策略,显著提升了安全性和开发体验。这些改进特别适合以下场景:
- 需要严格服务间认证的微服务架构
- 复杂数据关系的GraphQL API设计
- 多环境部署的前后端分离应用
对于现有用户,建议特别关注派生字段新语法带来的简化效果,以及mTLS配置对企业安全合规的帮助。新用户可以借此版本体验现代GraphQL网关在API聚合和安全方面的完整能力。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









