System.Linq.Dynamic.Core 项目新增 JSON 查询支持的技术解析
在最新版本的 System.Linq.Dynamic.Core 动态 LINQ 库中,开发团队新增了对 JSON 数据的原生查询支持。这一重要特性使得开发者能够直接对 JSON 文档执行动态 LINQ 查询,无需预先转换为强类型对象,大大简化了处理动态 JSON 数据的开发流程。
技术背景
传统上,当开发者需要查询 JSON 数据时,通常需要先将 JSON 反序列化为强类型对象,或者使用繁琐的 JSON API 进行手动查询。System.Linq.Dynamic.Core 的新特性通过扩展方法的形式,为 System.Text.Json 和 Newtonsoft.Json 这两个主流 JSON 库提供了直接的动态查询能力。
核心实现原理
该功能的实现采用了动态类型生成的策略。当对 JsonElement 或 JObject 执行查询时,库内部会:
- 动态分析 JSON 数据结构
- 生成对应的动态类型
- 将 JSON 属性映射为动态类型的属性
- 构建并执行动态 LINQ 表达式
这种实现方式既保持了查询语法的简洁性,又确保了查询性能。
使用示例
对于 System.Text.Json,现在可以这样查询:
var jsonDocument = JsonDocument.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""2023-04-23T18:25:43.511Z""
}]");
var results = jsonDocument.RootElement.EnumerateArray().AsQueryable()
.Where("City == \"Paris\"");
对于 Newtonsoft.Json,使用方式类似:
var jsonArray = JArray.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""2023-04-23T18:25:43.511Z""
}]");
var results = jsonArray.AsQueryable()
.Where("City == \"Paris\"");
技术优势
- 简化代码:无需手动处理 JsonElement 或 JObject 的 API 调用
- 保持动态性:适用于结构未知或变化的 JSON 数据
- 性能优化:查询表达式会被编译为高效的委托
- 统一接口:与现有的动态 LINQ 查询语法完全兼容
适用场景
这一特性特别适合以下场景:
- 处理来自第三方 API 的动态 JSON 响应
- 构建通用数据查询工具
- 开发需要灵活查询 JSON 数据的应用程序
- 实现动态报表或数据分析功能
实现细节
在底层实现上,System.Linq.Dynamic.Core 通过扩展方法为 JSON 类型添加了查询能力。对于数组类型的 JSON 数据,可以直接在枚举器上执行查询;对于复杂嵌套结构,查询表达式会自动处理属性访问路径。
该功能作为独立扩展包发布,开发者可以根据项目使用的 JSON 库选择安装对应的扩展包,保持项目的轻量性。
总结
System.Linq.Dynamic.Core 新增的 JSON 查询支持为.NET生态中的动态数据处理提供了更加完善的解决方案。通过这一特性,开发者能够以更加声明式的方式处理 JSON 数据,提高开发效率的同时保持代码的简洁性和可维护性。这一改进进一步巩固了 System.Linq.Dynamic.Core 作为.NET动态查询首选库的地位。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00