System.Linq.Dynamic.Core 项目新增 JSON 查询支持的技术解析
在最新版本的 System.Linq.Dynamic.Core 动态 LINQ 库中,开发团队新增了对 JSON 数据的原生查询支持。这一重要特性使得开发者能够直接对 JSON 文档执行动态 LINQ 查询,无需预先转换为强类型对象,大大简化了处理动态 JSON 数据的开发流程。
技术背景
传统上,当开发者需要查询 JSON 数据时,通常需要先将 JSON 反序列化为强类型对象,或者使用繁琐的 JSON API 进行手动查询。System.Linq.Dynamic.Core 的新特性通过扩展方法的形式,为 System.Text.Json 和 Newtonsoft.Json 这两个主流 JSON 库提供了直接的动态查询能力。
核心实现原理
该功能的实现采用了动态类型生成的策略。当对 JsonElement 或 JObject 执行查询时,库内部会:
- 动态分析 JSON 数据结构
- 生成对应的动态类型
- 将 JSON 属性映射为动态类型的属性
- 构建并执行动态 LINQ 表达式
这种实现方式既保持了查询语法的简洁性,又确保了查询性能。
使用示例
对于 System.Text.Json,现在可以这样查询:
var jsonDocument = JsonDocument.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""2023-04-23T18:25:43.511Z""
}]");
var results = jsonDocument.RootElement.EnumerateArray().AsQueryable()
.Where("City == \"Paris\"");
对于 Newtonsoft.Json,使用方式类似:
var jsonArray = JArray.Parse(@"[{
""first"": 1,
""City"": ""Paris"",
""third"": ""2023-04-23T18:25:43.511Z""
}]");
var results = jsonArray.AsQueryable()
.Where("City == \"Paris\"");
技术优势
- 简化代码:无需手动处理 JsonElement 或 JObject 的 API 调用
- 保持动态性:适用于结构未知或变化的 JSON 数据
- 性能优化:查询表达式会被编译为高效的委托
- 统一接口:与现有的动态 LINQ 查询语法完全兼容
适用场景
这一特性特别适合以下场景:
- 处理来自第三方 API 的动态 JSON 响应
- 构建通用数据查询工具
- 开发需要灵活查询 JSON 数据的应用程序
- 实现动态报表或数据分析功能
实现细节
在底层实现上,System.Linq.Dynamic.Core 通过扩展方法为 JSON 类型添加了查询能力。对于数组类型的 JSON 数据,可以直接在枚举器上执行查询;对于复杂嵌套结构,查询表达式会自动处理属性访问路径。
该功能作为独立扩展包发布,开发者可以根据项目使用的 JSON 库选择安装对应的扩展包,保持项目的轻量性。
总结
System.Linq.Dynamic.Core 新增的 JSON 查询支持为.NET生态中的动态数据处理提供了更加完善的解决方案。通过这一特性,开发者能够以更加声明式的方式处理 JSON 数据,提高开发效率的同时保持代码的简洁性和可维护性。这一改进进一步巩固了 System.Linq.Dynamic.Core 作为.NET动态查询首选库的地位。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00