Drizzle ORM 跨包类型推断问题分析与解决方案
问题背景
在使用 Drizzle ORM 构建的 monorepo 项目中,开发者遇到了一个关于类型推断的特殊问题。当在一个共享的数据库包中使用 $inferSelect 和 $inferInsert 生成类型,并在其他包中引用这些类型时,类型会被错误地推断为 any。然而,手动定义的类型却能正常推断。
问题现象
具体表现为:
-
在共享包中定义的类型:
export type User = typeof users.$inferSelect // 在其他包中被推断为 any export type Organization = { id: number, name: string, created_at: Date } // 正常推断 export type UserDetail = User & { organizations: Organization[] } // 只有 Organization[] 部分被正确推断 -
项目结构为 monorepo,包含:
- 共享包 (packages/shared)
- Next.js 应用 (apps/web)
根本原因分析
经过深入调查,发现问题根源在于 TypeScript 的构建配置和类型文件处理方式:
-
构建系统问题:Next.js 的构建系统不支持传统的 TypeScript 项目引用(project references),导致无法正确解析跨包的类型依赖关系。
-
类型文件处理:
.d.ts类型声明文件没有被包含在构建输出中,而实际导入的是原始 schema 文件,这导致了类型推断链的中断。 -
Drizzle ORM 的特殊性:
$inferSelect和$inferInsert是 Drizzle ORM 特有的类型级操作,它们依赖于完整的类型上下文才能正常工作。
解决方案
解决此问题的关键在于确保类型文件被正确处理和包含:
-
正确配置构建系统:
- 确保共享包的
tsconfig.json中设置了"declaration": true以生成类型声明文件 - 确认
"include"和"exclude"配置正确覆盖所有需要处理的文件
- 确保共享包的
-
确保类型文件被包含:
// 在共享包的构建配置中明确包含类型文件 { "include": ["./**/*.ts", "./**/*.d.ts"], "exclude": ["node_modules", "dist"] } -
Next.js 适配方案:
- 使用 Next.js 支持的模块解析方式
- 确保共享包构建后的输出结构符合 Next.js 的预期
最佳实践建议
-
monorepo 类型共享:
- 对于 Drizzle ORM 生成的类型,建议将其单独导出到一个类型文件中
- 考虑使用类型重导出来减少依赖链的复杂性
-
构建流程优化:
- 在共享包中设置预构建脚本,确保类型文件先被生成
- 在消费者应用中配置正确的类型查找路径
-
调试技巧:
- 使用
tsc --traceResolution来跟踪类型解析过程 - 检查构建后的 dist 目录,确认所有必要的类型文件都存在
- 使用
总结
Drizzle ORM 的类型系统在 monorepo 环境中需要特别注意构建配置和类型文件的处理。通过确保类型文件被正确包含在构建过程中,并适当配置 TypeScript 的模块解析,可以解决跨包类型推断为 any 的问题。这个问题也提醒我们,在使用高级类型特性时,需要更加关注构建系统的细节配置。
对于使用 Drizzle ORM 的开发者来说,理解类型推断的工作原理和构建系统的交互方式,将有助于避免类似问题的发生,并构建出更加健壮的类型系统。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00