Cortex项目中的peakSamples支持与查询前端优化
在分布式监控系统Cortex中,查询前端(Query Frontend)作为查询请求的入口和协调器,负责处理来自客户端的PromQL查询请求。近期社区对查询前端的响应数据结构进行了重要增强,增加了对peakSamples字段的支持,这一改进对于监控系统资源使用情况的精确统计具有重要意义。
peakSamples的背景与意义
peakSamples是Prometheus查询响应中的一个关键指标,它记录了查询执行过程中内存中同时存在的样本点(samples)的最大数量。这个指标对于理解查询的资源消耗至关重要,因为它直接反映了查询对内存的压力峰值。
在Prometheus核心代码中,peakSamples早已作为查询统计的一部分被支持。然而在Cortex的分布式架构中,这一指标尚未被纳入查询前端的响应数据结构中。这种缺失导致用户在通过Cortex查询时无法获取完整的内存使用情况信息。
Cortex中的实现差异
Cortex查询前端原有的响应数据结构(定义在query.proto中)仅包含两个与样本数量相关的字段:
- totalQueryableSamples:查询过程中处理的总样本数
- totalQueryableSamplesPerStep:每个计算步骤处理的样本数
相比之下,peakSamples提供了不同的视角——它不关注总量,而是关注查询执行期间的内存使用峰值。这一指标对于系统容量规划和查询优化特别有价值,因为它能帮助识别那些可能导致内存压力过大的查询。
技术实现方案
在Cortex中实现peakSamples支持需要从两个层面进行修改:
-
协议层扩展:首先需要在查询前端的Protobuf定义中添加peakSamples字段,保持与Prometheus核心API的一致性。
-
合并逻辑实现:由于Cortex查询前端可能将大查询拆分为多个子查询并行执行,因此需要设计合理的合并策略。经过社区讨论,确定采用最大值(max)而非求和(sum)的聚合方式,因为peakSamples反映的是内存使用峰值,各子查询的峰值时间点可能不同步,取最大值能更准确地反映整体查询的内存压力。
对系统监控的价值
增加peakSamples支持后,Cortex用户可以获得更全面的查询资源消耗画像:
- 通过totalQueryableSamples了解查询的总体工作量
- 通过peakSamples评估查询的内存需求峰值
- 结合两者可以更精准地识别需要优化的查询模式
这对于大规模部署环境尤为重要,管理员可以基于这些指标设置更精细的查询限制策略,防止单个资源密集型查询影响整个系统的稳定性。
总结
Cortex项目对peakSamples的支持补齐了与Prometheus核心功能的差距,使分布式监控系统能够提供与单机部署同等丰富的查询统计信息。这一改进虽然看似是小规模的API扩展,但对于提升系统的可观测性和资源管理能力具有实际价值,体现了Cortex项目持续优化用户体验的承诺。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00