探索高效负载均衡算法:weighted 和 RRW Go 库
在这个高度分布式和微服务化的时代,选择一个合适的负载均衡算法至关重要。今天,我们向您推荐一个由 Smallnest 开发的开源 Go 库——weighted,它实现了平滑加权轮询(Smooth Weighted Round Robin)算法,并提供了一个类似于 LVS 的权重轮询算法(Weighted Round Robin)。让我们一起深入了解一下这个库的魅力。
1、项目介绍
weighted 是一个专注于负载均衡策略的 Go 包,提供了两种高效的实现方案。平滑加权轮询算法在 Nginx 中被广泛应用,而另一种权重轮询算法则源于 Linux 虚拟服务器(LVS)。这两个算法都允许开发者根据服务或节点的性能分配不同的权重,以达到优化资源分配的目标。
2、项目技术分析
-
平滑加权轮询(SW): 在每次选取节点时,每个可选节点的
current_weight增加上其自身的权重。选择当前current_weight最大的节点后,再减去所有节点权重之和。这样可以保证在多次选择中,权重较高的节点有更多的机会被选中,同时避免了重复选择同一节点的情况。 -
权重轮询(RRW): 这种算法直接基于节点的权重进行轮流选择,具有更好的性能表现,但其负载分布不如 SW 算法平滑。适合对响应时间要求较高且不那么重视均匀分配的场景。
3、项目及技术应用场景
-
微服务架构: 使用
weighted可以帮助你在多个微服务实例间平衡请求,确保高负载的服务得到更多的处理资源。 -
云环境: 在云环境中部署应用时,可以利用该库动态调整各节点权重,适应不同规模的实例或变动的工作负载。
-
CDN 分发: 对于 CDN 配置,可以根据各地节点的速度和稳定性为它们分配不同的权重,提高用户体验。
-
分布式数据库: 在分片数据库集群中,可以根据各个分片的处理能力和当前压力来调整权重,保持数据读写的均衡。
4、项目特点
-
简单易用: 提供简洁的 API,快速集成到现有系统中。
-
灵活选择: 两个不同的负载均衡算法,可根据业务需求选择最合适的策略。
-
无依赖性: 几乎没有外部依赖,只依赖标准库,便于维护和部署。
-
测试覆盖率高: 通过 Travis CI 持续集成,全面的单元测试确保代码质量。
尽管 weighted 不是线程安全的,但在多 goroutine 环境下使用时,你可以借助 Go 的同步原语轻松解决这个问题。
了解这些之后,您可以尝试在您的项目中引入 weighted,以提升系统的效率和可靠性。只需简单的几行代码,就可以享受到这个强大库带来的好处。立即查看项目文档并开始试用吧!
// 示例代码
package main
import (
"fmt"
"github.com/smallnest/weighted"
)
func main() {
// 使用平滑加权轮询
w := &weighted.SW{}
w.Add("a", 5)
w.Add("b", 2)
w.Add("c", 3)
for i := 0; i < 10; i++ {
fmt.Printf("%s ", w.Next())
}
// 或者,使用权重轮询
r := &weighted.RRW{}
r.Add("a", 5)
r.Add("b", 2)
r.Add("c", 3)
for i := 0; i < 10; i++ {
fmt.Printf("%s ", r.Next())
}
}
让我们共同探索 weighted,在构建高效可靠的分布式系统中迈出坚实的一步!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00