Ghidra项目中Rust AArch64二进制文件BSim签名应用问题分析
问题背景
在使用Ghidra进行二进制分析时,BSim(Binary Similarity)功能是一个强大的工具,它可以通过函数签名匹配来识别不同二进制文件中的相似函数。然而,在处理Rust语言编译的AArch64架构二进制文件时,用户遇到了一个特定问题:当尝试应用从无符号剥离的Rust二进制文件生成的BSim签名到另一个剥离符号的Rust二进制文件时,系统会抛出"Apply signature failed (Invalid calling convention name: __rustcall)"的错误。
技术分析
调用约定问题
这个问题的核心在于Rust编译器使用的__rustcall
调用约定在Ghidra中未被正确定义。调用约定(Calling Convention)是函数调用时参数传递、寄存器使用和栈管理的规则体系。在x86架构下,Ghidra已经初步支持了Rust编译器规范扩展,但在AArch64等其他架构上,这一支持尚未实现。
问题表现
当用户执行以下操作流程时会出现问题:
- 对无符号剥离的Rust二进制文件(
rust-rayon2-nostrip
)进行自动分析 - 生成BSim签名并提交到BSim数据库
- 尝试将这些签名应用到另一个剥离符号的二进制文件(
rust-rayon2-strip
) - 系统拒绝应用签名,因为无法识别
__rustcall
调用约定
底层原因
深入分析发现,即使在原始程序中,__rustcall
约定也只是在DWARF调试信息分析过程中被强制应用到函数上,实际上并未在Ghidra中正确定义。这导致在创建函数定义数据类型(FunctionDefinitionDataType)等操作时,系统会拒绝传播未定义的调用约定,从而产生错误。
解决方案
官方修复
Ghidra开发团队已经确认将推出修复方案,允许在不考虑调用约定的情况下应用签名。这种解决方案虽然绕过了调用约定验证,但保证了签名匹配功能的基本可用性。
临时解决方案
在官方修复发布前,用户可以采取以下临时措施:
- 仅应用函数名称而不应用完整的签名
- 手动修改或忽略调用约定相关的验证步骤
- 考虑为AArch64架构实现类似的Rust编译器规范扩展
技术影响
这个问题反映了Ghidra对新语言特性支持的一个典型挑战。随着Rust在系统编程领域的普及,对Rust特定特性的支持变得越来越重要。特别是在跨架构支持方面,需要更全面的解决方案。
最佳实践建议
对于使用Ghidra分析Rust二进制文件的用户,建议:
- 关注Ghidra的更新,特别是对Rust支持的改进
- 在分析不同架构的Rust二进制时,注意调用约定相关的潜在问题
- 考虑维护自定义的编译器规范扩展以支持特定需求
- 在BSim签名匹配时,可以优先考虑不依赖调用约定的匹配策略
这个问题虽然表现为一个具体的错误消息,但背后涉及二进制分析工具对新语言特性支持的广泛挑战,值得二进制分析领域的开发者持续关注。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









