GPUStack项目中配置vLLM日志输出为JSON格式的实践指南
2025-07-01 15:01:41作者:牧宁李
在GPUStack项目中,vLLM作为重要的推理引擎组件,其日志输出格式的定制化配置对于日志收集和分析至关重要。本文将详细介绍如何将vLLM的日志输出配置为JSON格式,以便更好地与OpenSearch等日志分析系统集成。
背景与需求
现代AI推理服务通常需要将日志集中收集和分析,而JSON格式因其结构化特性成为日志收集系统的首选格式。vLLM作为GPUStack的核心组件,默认使用普通文本格式输出日志,这不利于后续的日志分析和处理。
配置步骤详解
1. 准备JSON日志配置文件
首先需要创建一个JSON格式的日志配置文件,命名为logging_config.json
,内容如下:
{
"formatters": {
"json": {
"class": "pythonjsonlogger.jsonlogger.JsonFormatter"
}
},
"handlers": {
"console": {
"class" : "logging.StreamHandler",
"formatter": "json",
"level": "INFO",
"stream": "ext://sys.stdout"
}
},
"loggers": {
"vllm": {
"handlers": ["console"],
"level": "INFO",
"propagate": false
}
},
"version": 1
}
此配置定义了:
- 使用JsonFormatter格式化日志
- 将日志输出到控制台(stdout)
- 仅处理INFO及以上级别的日志
- 只对vLLM模块的日志生效
2. 安装依赖包
需要安装python-json-logger
包来实现JSON格式的日志输出:
pip install python-json-logger
注意:在未来的GPUStack版本中,此依赖将被预装在Docker镜像中。
3. 启动GPUStack容器
使用以下命令启动GPUStack容器,并挂载日志配置文件:
docker run -d \
--gpus all \
--network=host \
--ipc=host \
-e VLLM_LOGGING_CONFIG_PATH=/tmp/logging_config.json \
-v $PWD/logging_config.json:/tmp/logging_config.json \
gpustack/gpustack:v0.5.1
关键点:
- 必须通过
-e
参数设置VLLM_LOGGING_CONFIG_PATH
环境变量 - 通过
-v
参数将配置文件挂载到容器内指定位置
4. 验证配置效果
成功启动后,vLLM的日志将以JSON格式输出,例如:
{"message": "Loading model weights took 0.9277 GB"}
{"message": "Memory profiling takes 0.45 seconds\nthe current vLLM instance can use total_gpu_memory (23.55GiB) x gpu_memory_utilization (0.90) = 21.20GiB\nmodel weights take 0.93GiB; non_torch_memory takes 0.07GiB; PyTorch activation peak memory takes 1.44GiB; the rest of the memory reserved for KV Cache is 18.76GiB."}
常见问题与解决方案
-
配置未生效:确保环境变量
VLLM_LOGGING_CONFIG_PATH
是通过-e
参数设置的,而不是直接在容器内设置。 -
缺少依赖:如果看到日志格式未改变,请检查是否已安装
python-json-logger
包。 -
日志格式不完整:可以根据需要扩展JsonFormatter的配置,添加更多字段如时间戳、日志级别等。
高级配置建议
对于生产环境,可以考虑以下增强配置:
- 添加更多日志字段:
"formatters": {
"json": {
"class": "pythonjsonlogger.jsonlogger.JsonFormatter",
"format": "%(asctime)s %(levelname)s %(message)s"
}
}
-
将日志输出到文件而非控制台,便于日志收集工具处理。
-
针对不同模块设置不同的日志级别,优化日志量。
通过以上配置,GPUStack中的vLLM组件日志可以完美集成到现有的日志分析系统中,为AI服务的运维监控提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
992
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401