GPUStack项目中配置vLLM日志输出为JSON格式的实践指南
2025-07-01 01:06:36作者:牧宁李
在GPUStack项目中,vLLM作为重要的推理引擎组件,其日志输出格式的定制化配置对于日志收集和分析至关重要。本文将详细介绍如何将vLLM的日志输出配置为JSON格式,以便更好地与OpenSearch等日志分析系统集成。
背景与需求
现代AI推理服务通常需要将日志集中收集和分析,而JSON格式因其结构化特性成为日志收集系统的首选格式。vLLM作为GPUStack的核心组件,默认使用普通文本格式输出日志,这不利于后续的日志分析和处理。
配置步骤详解
1. 准备JSON日志配置文件
首先需要创建一个JSON格式的日志配置文件,命名为logging_config.json,内容如下:
{
"formatters": {
"json": {
"class": "pythonjsonlogger.jsonlogger.JsonFormatter"
}
},
"handlers": {
"console": {
"class" : "logging.StreamHandler",
"formatter": "json",
"level": "INFO",
"stream": "ext://sys.stdout"
}
},
"loggers": {
"vllm": {
"handlers": ["console"],
"level": "INFO",
"propagate": false
}
},
"version": 1
}
此配置定义了:
- 使用JsonFormatter格式化日志
- 将日志输出到控制台(stdout)
- 仅处理INFO及以上级别的日志
- 只对vLLM模块的日志生效
2. 安装依赖包
需要安装python-json-logger包来实现JSON格式的日志输出:
pip install python-json-logger
注意:在未来的GPUStack版本中,此依赖将被预装在Docker镜像中。
3. 启动GPUStack容器
使用以下命令启动GPUStack容器,并挂载日志配置文件:
docker run -d \
--gpus all \
--network=host \
--ipc=host \
-e VLLM_LOGGING_CONFIG_PATH=/tmp/logging_config.json \
-v $PWD/logging_config.json:/tmp/logging_config.json \
gpustack/gpustack:v0.5.1
关键点:
- 必须通过
-e参数设置VLLM_LOGGING_CONFIG_PATH环境变量 - 通过
-v参数将配置文件挂载到容器内指定位置
4. 验证配置效果
成功启动后,vLLM的日志将以JSON格式输出,例如:
{"message": "Loading model weights took 0.9277 GB"}
{"message": "Memory profiling takes 0.45 seconds\nthe current vLLM instance can use total_gpu_memory (23.55GiB) x gpu_memory_utilization (0.90) = 21.20GiB\nmodel weights take 0.93GiB; non_torch_memory takes 0.07GiB; PyTorch activation peak memory takes 1.44GiB; the rest of the memory reserved for KV Cache is 18.76GiB."}
常见问题与解决方案
-
配置未生效:确保环境变量
VLLM_LOGGING_CONFIG_PATH是通过-e参数设置的,而不是直接在容器内设置。 -
缺少依赖:如果看到日志格式未改变,请检查是否已安装
python-json-logger包。 -
日志格式不完整:可以根据需要扩展JsonFormatter的配置,添加更多字段如时间戳、日志级别等。
高级配置建议
对于生产环境,可以考虑以下增强配置:
- 添加更多日志字段:
"formatters": {
"json": {
"class": "pythonjsonlogger.jsonlogger.JsonFormatter",
"format": "%(asctime)s %(levelname)s %(message)s"
}
}
-
将日志输出到文件而非控制台,便于日志收集工具处理。
-
针对不同模块设置不同的日志级别,优化日志量。
通过以上配置,GPUStack中的vLLM组件日志可以完美集成到现有的日志分析系统中,为AI服务的运维监控提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
230
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
591
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.52 K