CUTLASS项目中Split-K实现的三种方案对比分析
2025-05-31 04:37:46作者:咎岭娴Homer
在深度学习和高性能计算领域,矩阵乘法(GEMM)是最核心的计算操作之一。NVIDIA的CUTLASS库作为高效实现GEMM的计算库,提供了多种优化技术。其中Split-K技术是一种重要的并行优化手段,本文将深入分析CUTLASS中Split-K的三种实现方案及其技术考量。
Split-K技术概述
Split-K是一种将矩阵乘法中K维度(内积维度)进行分割并行计算的技术。传统GEMM计算中,每个输出元素是A矩阵一行和B矩阵一列的点积,而Split-K将这个点积计算分割成多个部分并行计算,最后将部分结果合并。
三种Split-K实现方案
方案一:基于线程块的全局内存归约
这是CUTLASS中最基础的Split-K实现方式:
- 将K维度分割给多个线程块并行计算
- 每个线程块计算部分结果并写入全局内存
- 启动单独的归约核函数合并部分结果
优点:
- 实现简单直接
- 对问题规模适应性好
- 可以充分利用现有高度优化的GEMM核函数
缺点:
- 需要额外的全局内存访问开销
- 需要额外的核函数启动开销
方案二:基于线程的共享内存归约
这是一种更激进的优化方案:
- 将K维度分割给多个线程并行计算
- 部分结果在共享内存中进行归约
- 最终结果直接写入全局内存
优点:
- 避免了全局内存的中间存储
- 无需额外的核函数启动
缺点:
- 实现复杂度高
- 会降低计算单元的算术强度
- 对现有GEMM核函数的改动较大
- 适用场景有限
方案三:基于信号量的串行归约
CUTLASS还提供了一种折中方案:
- 使用信号量机制协调多个线程块
- 部分结果在多个线程块间串行归约
- 避免了全局内存的中间存储和额外核函数启动
特点:
- 实现复杂度介于前两种方案之间
- 性能表现取决于具体架构和问题规模
- 需要精心设计流水线策略和融合方案
技术选型考量
在实际工程实现中,选择哪种Split-K方案需要考虑多方面因素:
- 硬件架构特性:不同GPU架构对共享内存、全局内存的访问延迟和带宽有不同特性
- 问题规模:小规模问题可能更适合方案二,大规模问题可能更适合方案一
- 核函数调度:现有核函数的优化程度和可扩展性
- 实现复杂度:团队的技术能力和开发周期限制
- 流水线策略:计算与通信的重叠程度
总结
CUTLASS项目提供了多种Split-K实现方案,各有其适用场景和优缺点。方案一因其简单可靠成为默认选择;方案二在特定场景下可能获得更好性能但实现复杂;方案三则提供了平衡的选择。开发者应根据具体应用场景和性能需求,选择最适合的实现方案。理解这些技术细节有助于在自定义GEMM实现时做出更明智的设计决策。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.9 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1