Shot-scraper项目新增HAR文件记录功能解析
在现代Web开发和测试工作中,网络请求的记录与分析是一项重要任务。Shot-scraper作为一款基于Playwright的网页截图工具,近期新增了对HAR(Hypertext Application Resource)文件的支持,这为开发者提供了更强大的网络请求分析能力。
HAR文件是一种标准化的JSON格式,用于记录浏览器与网站交互过程中产生的所有网络请求和响应信息。通过分析HAR文件,开发者可以深入了解页面加载性能、资源请求情况以及潜在的问题。
Shot-scraper通过Playwright的底层能力实现了HAR记录功能。在实现过程中,开发团队发现Playwright提供了两种不同的HAR记录方式:一种是较新的record_har_path参数,另一种是早期的route_from_har方法。经过评估,最终选择了更简洁直接的record_har_path方案。
使用该功能非常简单,只需在命令行中执行:
shot-scraper har https://example.com/
命令执行后会自动生成一个压缩的HAR文件,默认命名为目标网站的域名加上.har.zip后缀。用户也可以通过-o参数指定输出文件名。
生成的HAR文件包含了完整的网络请求记录,包括:
- 请求URL和HTTP方法
- 请求和响应头信息
- 响应内容(可选择嵌入或附加)
- 请求时间戳和耗时
- HTTP状态码
对于需要更复杂场景的用户,Shot-scraper还提供了多项配置选项:
- 支持HTTP基本认证
- 可设置超时时间
- 能够绕过内容安全策略(CSP)
- 可选择记录控制台日志
值得注意的是,当前版本的实现中,JavaScript执行(-j参数)会在HAR记录完成后进行,这意味着通过JavaScript修改的DOM操作不会反映在HAR文件中。这是由Playwright的工作机制决定的,开发团队正在评估未来版本中可能的改进方案。
该功能的加入使得Shot-scraper不再仅是一个简单的截图工具,而是成为了一个全面的网页信息采集解决方案。开发者现在可以一站式完成网页截图、JavaScript执行和网络请求分析等多种任务,大大提升了工作效率。
对于需要进行批量操作的用户,开发团队还计划在未来版本中为shot-scraper multi命令添加HAR记录支持,这将使得大规模网站测试和分析变得更加便捷。
总的来说,Shot-scraper的HAR记录功能为Web开发者提供了一个轻量级但功能强大的网络请求分析工具,特别适合需要进行网页性能优化、接口调试或自动化测试的场景。随着功能的不断完善,它有望成为开发者工具箱中不可或缺的一部分。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00