PySINDy中集成优化器的子采样策略优化分析
2025-07-10 04:53:43作者:卓艾滢Kingsley
在动力学系统建模领域,PySINDy作为一个强大的稀疏识别工具包,其集成优化器(EnsembleOptimizer)功能通过bagging技术显著提升了模型鲁棒性。本文将深入分析当前实现中的一个重要技术细节,并提出基于统计理论的优化建议。
背景与问题
集成方法通过组合多个基础模型的预测来提高整体性能,其中数据子采样策略是关键环节。PySINDy当前实现中,当启用bagging且未明确设置n_subset参数时,默认采用样本量的60%作为子集大小。这一策略存在两个潜在问题:
- 未区分有放回(bootstrap)和无放回采样场景
- 与文档描述存在不一致性
统计学原理
根据经典bootstrap理论(Efron, 1979),有放回采样时,理想情况下子集大小应与原始数据集相同。这种设计可以:
- 保持原始数据分布特征
- 确保每个bootstrap样本具有足够的统计信息
- 符合bootstrap方法的理论假设
而无放回采样时,采用较小比例(如60%)则更为合理,这有助于:
- 增加模型间的多样性
- 避免数据冗余
- 提高集成模型的泛化能力
技术实现建议
建议修改EnsembleOptimizer的默认行为如下逻辑:
if self.bagging and self.n_subset is None:
if self.replace: # 有放回采样
self.n_subset = n_samples
else: # 无放回采样
self.n_subset = int(0.6 * n_samples)
这一改进将带来三个优势:
- 符合统计理论的最佳实践
- 保持代码行为与文档描述的一致性
- 提升算法在不同采样模式下的理论合理性
工程实践意义
在系统辨识任务中,特别是面对高噪声或小样本数据时(Fasel et al., 2022),正确的采样策略对模型性能至关重要。这一优化将使得:
- bootstrap采样能更准确地估计参数分布
- 无放回采样能更好地探索数据空间
- 用户无需手动调整即可获得合理的默认行为
结论
本文分析了PySINDy集成优化器中子采样策略的技术细节,提出了基于统计理论的优化方案。这一改进虽小,但对保证算法理论基础和实际性能的一致性具有重要意义,特别有利于处理复杂动力学系统的建模问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19