LMMs-Eval项目多GPU推理中的设备分配问题解析
2025-07-01 15:01:35作者:殷蕙予
在LMMs-Eval项目中使用多GPU进行模型推理时,开发者可能会遇到一个常见的设备分配问题:当设置num_processes参数大于1时,模型会被加载到不同的GPU设备上,导致运行时错误"Expected all tensors to be on the same device"。
问题现象
当用户尝试使用多个GPU进程进行推理时,例如通过以下命令启动:
accelerate launch --num_processes=2 -m lmms_eval --model llava --model_args pretrained="xxx,conv_template=xxx" --tasks gqa,vqav2,scienceqa,textvqa --batch_size 1
系统会抛出运行时错误,提示发现张量分布在不同的设备上(如cuda:0和cuda:1)。这种情况在卷积运算等需要设备一致性的操作中尤为明显。
问题根源
该问题的本质在于模型在多进程环境下的设备分配策略。在较新版本的LMMs-Eval中,当使用多个进程时,系统会默认尝试将模型分布到不同设备上,而某些操作(如卷积)要求所有输入张量必须位于同一设备上。
解决方案
经过项目维护者的验证,正确的解决方法是:
- 当使用单进程(num_processes=1)时,可以设置device_map="auto"让系统自动分配设备
- 当使用多进程(num_processes>1)时,应该显式设置device_map=""(空字符串),这会禁用自动设备映射
正确的多GPU启动命令应为:
accelerate launch --num_processes=4 --main_process_port 19500 -m lmms_eval --model llava --model_args pretrained="xxx,conv_template=xxx,device_map=""" --task textvqa_val
技术背景
这个问题涉及到PyTorch的多GPU编程模型和HuggingFace的accelerate库的交互。在分布式训练/推理场景中,设备分配策略需要特别注意:
- 数据并行要求每个进程拥有完整的模型副本
- 某些操作(如卷积)对设备一致性有严格要求
- device_map参数控制着模型在设备间的分布方式
最佳实践建议
- 在单GPU场景下使用device_map="auto"可以充分利用设备资源
- 在多GPU场景下应该禁用自动设备映射(device_map="")
- 对于不同的模型架构,可能需要调整batch_size以避免内存溢出
- 监控GPU利用率以确保资源被有效利用
通过正确配置设备映射参数,开发者可以充分利用多GPU的计算能力,同时避免设备不一致导致的运行时错误。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1