首页
/ LMMs-Eval项目多GPU推理中的设备分配问题解析

LMMs-Eval项目多GPU推理中的设备分配问题解析

2025-07-01 11:22:38作者:殷蕙予

在LMMs-Eval项目中使用多GPU进行模型推理时,开发者可能会遇到一个常见的设备分配问题:当设置num_processes参数大于1时,模型会被加载到不同的GPU设备上,导致运行时错误"Expected all tensors to be on the same device"。

问题现象

当用户尝试使用多个GPU进程进行推理时,例如通过以下命令启动:

accelerate launch --num_processes=2 -m lmms_eval --model llava --model_args pretrained="xxx,conv_template=xxx" --tasks gqa,vqav2,scienceqa,textvqa --batch_size 1

系统会抛出运行时错误,提示发现张量分布在不同的设备上(如cuda:0和cuda:1)。这种情况在卷积运算等需要设备一致性的操作中尤为明显。

问题根源

该问题的本质在于模型在多进程环境下的设备分配策略。在较新版本的LMMs-Eval中,当使用多个进程时,系统会默认尝试将模型分布到不同设备上,而某些操作(如卷积)要求所有输入张量必须位于同一设备上。

解决方案

经过项目维护者的验证,正确的解决方法是:

  1. 当使用单进程(num_processes=1)时,可以设置device_map="auto"让系统自动分配设备
  2. 当使用多进程(num_processes>1)时,应该显式设置device_map=""(空字符串),这会禁用自动设备映射

正确的多GPU启动命令应为:

accelerate launch --num_processes=4 --main_process_port 19500 -m lmms_eval --model llava --model_args pretrained="xxx,conv_template=xxx,device_map=""" --task textvqa_val

技术背景

这个问题涉及到PyTorch的多GPU编程模型和HuggingFace的accelerate库的交互。在分布式训练/推理场景中,设备分配策略需要特别注意:

  1. 数据并行要求每个进程拥有完整的模型副本
  2. 某些操作(如卷积)对设备一致性有严格要求
  3. device_map参数控制着模型在设备间的分布方式

最佳实践建议

  1. 在单GPU场景下使用device_map="auto"可以充分利用设备资源
  2. 在多GPU场景下应该禁用自动设备映射(device_map="")
  3. 对于不同的模型架构,可能需要调整batch_size以避免内存溢出
  4. 监控GPU利用率以确保资源被有效利用

通过正确配置设备映射参数,开发者可以充分利用多GPU的计算能力,同时避免设备不一致导致的运行时错误。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133