在MuJoCo Menagerie项目中实现关节速度控制的方法解析
2025-07-05 18:10:02作者:袁立春Spencer
前言
MuJoCo Menagerie项目作为DeepMind维护的机器人模型库,为研究人员提供了丰富的机器人模型资源。在实际机器人控制中,除了常见的关节位置控制外,关节速度控制也是非常重要的控制方式。本文将深入探讨在MuJoCo Menagerie项目中实现关节速度控制的技术细节。
关节控制方式对比
在机器人控制领域,主要有三种基本的控制模式:
- 位置控制:直接指定关节的目标位置,控制器会计算所需的扭矩使关节达到该位置
- 速度控制:指定关节的目标速度,控制器会维持该速度运动
- 扭矩控制:直接向关节施加特定的扭矩
MuJoCo Menagerie中的Franka等模型默认使用位置控制,因为这种控制方式更稳定且易于实现。但在某些应用场景下,速度控制可能更为适合。
实现速度控制的技术方案
在MuJoCo中实现关节速度控制,可以通过配置特定的执行器类型来实现。MuJoCo提供了两种与速度相关的执行器:
- velocity执行器:直接控制关节速度
- intvelocity执行器:积分速度控制,可以理解为"速度的位置控制",即通过控制速度来间接控制位置
要修改模型使用速度控制,需要在模型XML文件中更改执行器的配置。例如,将原本的位置控制执行器:
<actuator>
<motor joint="joint1" ctrlrange="-1 1"/>
</actuator>
修改为速度控制执行器:
<actuator>
<velocity joint="joint1" ctrlrange="-1 1"/>
</actuator>
实现细节与注意事项
-
控制范围设置:速度控制的
ctrlrange
参数应根据实际机器人的物理限制合理设置,避免过大速度导致仿真不稳定 -
控制器设计:使用速度控制时,通常需要设计外环控制器来生成速度指令,这与位置控制的控制策略有所不同
-
稳定性考虑:纯速度控制可能导致积分漂移,在实际应用中常需要结合位置反馈
-
混合控制模式:可以部分关节使用位置控制,部分使用速度控制,根据任务需求灵活配置
实际应用建议
对于Franka等协作机器人模型,建议:
- 对于需要精确轨迹跟踪的任务,优先考虑位置控制
- 对于需要柔顺交互或连续运动的场景,可考虑速度控制
- 在切换控制模式时,注意控制指令的平滑过渡,避免突变
- 仿真时适当调整MuJoCo的求解器参数,确保速度控制的稳定性
总结
MuJoCo Menagerie项目虽然默认使用位置控制,但通过修改模型XML文件中的执行器配置,可以方便地实现关节速度控制。理解不同控制模式的特点和适用场景,能够帮助研究人员更好地利用这些机器人模型进行算法开发和验证。在实际应用中,根据具体任务需求选择合适的控制模式,往往能获得更好的效果。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
212
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44