GitHub Actions Runner Controller 在 ArgoCD 中删除时的死锁问题分析
GitHub Actions Runner Controller (ARC) 是一个用于在 Kubernetes 集群中管理自托管 GitHub Actions Runner 的工具。当与 ArgoCD 结合使用时,用户报告了一个关键问题:在尝试通过 ArgoCD 卸载 AutoscalingRunnerSet 时会出现死锁情况。
问题现象
在 ArgoCD 环境中部署 ARC 的 AutoscalingRunnerSet 后,当用户尝试卸载 ArgoCD 应用时,删除操作会被阻塞。这是因为 ARC 控制器为多个资源添加了 actions.github.com/cleanup-protection 终结器(finalizer),而 ArgoCD 尝试直接删除这些资源,导致两者互相等待,形成死锁。
受影响的资源类型包括:
- AutoscalingRunnerSet
- Kube 模式的服务账户
- Kube 模式的角色和角色绑定
- RunnerSet 管理器的角色和角色绑定
问题根源分析
这个问题本质上是 Kubernetes 资源生命周期管理和 GitOps 工具工作流之间的冲突。ARC 控制器使用终结器来确保资源被正确清理,而 ArgoCD 作为声明式 GitOps 工具,会直接尝试删除它管理的所有资源。
在标准 Helm 部署中,这种冲突不会发生,因为 Helm 会按正确顺序处理资源删除。但在 ArgoCD 中,由于所有资源都是平等对待的,缺乏对资源间依赖关系的理解,导致了这种死锁情况。
解决方案探讨
社区成员提出了几种解决方案:
-
ArgoCD 注解方案
通过为资源添加特定的 ArgoCD 注解可以解决这个问题:argocd.argoproj.io/sync-options: Delete=false- 告诉 ArgoCD 不要直接删除该资源argocd.argoproj.io/sync-wave: "1"- 控制资源同步顺序
-
分离部署架构
建议将控制器和 RunnerSet 部署为独立的 ArgoCD 应用,这样可以更灵活地管理它们的生命周期。 -
手动干预方案
在紧急情况下,可以手动移除终结器:kubectl patch autoscalingrunnerset <name> --type=json -p='[{"op": "remove", "path": "/metadata/finalizers"}]'
项目维护者立场
GitHub 官方维护团队表示目前没有足够资源正式支持 ArgoCD 集成。他们建议用户在需要特定 ArgoCD 支持时维护自己的 Helm Chart 分支。
最佳实践建议
对于生产环境使用 ARC 和 ArgoCD 的用户,建议采用以下架构:
- 将控制器部署为一个独立的 ArgoCD 应用
- 每个 RunnerSet 也作为独立的 ArgoCD 应用
- 为 RunnerSet 相关资源添加适当的 ArgoCD 注解
- 考虑使用同步波(sync-wave)来控制资源创建和删除顺序
这种架构既保持了 GitOps 的优势,又避免了资源删除时的死锁问题。
未来展望
虽然目前官方不直接支持 ArgoCD 集成,但社区可以继续探索更通用的解决方案,例如通过 Helm values 暴露资源注解配置,这样用户可以根据自己的部署工具需求自定义注解,而不需要维护 Chart 分支。这种方案对其他 GitOps 工具(如 Flux)用户也会有益处。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00