Diffrax项目中使用vmap进行批量ODE求解的实践指南
2025-07-10 20:52:59作者:冯爽妲Honey
问题背景
在科学计算和机器学习领域,经常需要求解大量参数不同的常微分方程(ODE)。Diffrax作为一个基于JAX的微分方程求解库,提供了强大的求解能力。本文将详细介绍如何正确使用JAX的vmap功能与Diffrax结合,实现高效的批量ODE求解。
核心问题分析
用户在使用Diffrax时遇到的主要问题是:当尝试使用jax.vmap对ODE求解过程进行向量化时,出现了"terms must be a PyTree of AbstractTerms"的错误。这通常是由于数据类型不匹配导致的。
解决方案详解
基本ODE求解
首先我们来看一个基本的ODE求解示例:
def odes(t, y, p):
vmax, km = p
d_y0 = -y[1] * vmax * y[0] / (km + y[0])
d_y1 = y[1] * 0.09 * vmax * y[0] / (km + y[0])
return jnp.array([d_y0, d_y1])
term = ODETerm(odes)
solver = Tsit5()
y0 = jnp.array([10.0, 0.2])
p = [10.0, 5.0]
solution = diffeqsolve(term, solver, 0, 120, 0.1, y0, p)
向量化求解的关键点
当需要进行批量求解时,必须确保以下几点:
- 初始条件y0必须使用jnp.array而不是Python列表
- ODE函数的返回值必须是jnp.array
- 参数p可以是列表或数组,但必须保持一致性
正确的向量化实现
以下是正确的批量求解实现方式:
# 准备批量数据
y0_array = jnp.array([jnp.linspace(6, 12, 7), jnp.linspace(0.1, 0.7, 7)])
p_array = jnp.array([jnp.linspace(8, 12, 7), jnp.linspace(4, 6, 7)])
# 向量化求解
vect_solve_ode = jax.vmap(
diffeqsolve,
in_axes=[None, None, None, None, None, 1, 1],
)
solutions = vect_solve_ode(term, solver, 0, 120, 0.1, y0_array, p_array)
高级技巧
处理额外参数
当需要传递额外参数如saveat、max_steps时,可以使用functools.partial:
from functools import partial
my_diffeqsolve = partial(diffeqsolve,
saveat=saveat,
max_steps=100_000,
throw=False)
vect_solve_ode = jax.vmap(
my_diffeqsolve,
in_axes=[None, None, None, None, None, 1, 1],
)
使用JIT加速
为了获得最佳性能,可以在最外层应用JIT编译:
vect_solve_ode = eqx.filter_jit(jax.vmap(
my_diffeqsolve,
in_axes=(None, None, None, None, None, 1, 1),
))
性能考虑
在实际应用中需要注意:
- 对于小型ODE系统,GPU可能不会带来性能提升,甚至可能更慢
- 向量化维度不宜过大,否则可能导致内存问题
- 合理设置max_steps以避免无限循环
总结
通过正确使用vmap和JIT,可以充分发挥Diffrax在批量求解ODE问题上的强大能力。关键是要确保数据类型的一致性,并合理组织代码结构。本文介绍的方法可以扩展到更复杂的微分方程求解场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895