Qiskit量子编译流程中离散基矢合成的优化方向
量子计算领域知名开源框架Qiskit正在考虑对其编译流程进行重要改进,特别是在处理离散基矢合成方面。本文将深入分析当前编译流程的局限性以及未来可能的优化方向。
当前编译流程的挑战
在量子电路编译过程中,将高级量子操作转换为硬件可执行的基本门集合是一个关键步骤。目前Qiskit的transpile函数主要面向连续基矢(continuous basis)优化,这在处理离散基矢(discrete basis)如["h", "t", "tdg", "cx"]时存在效率问题。
离散基矢合成需要专门的算法,如Solovay-Kitaev算法,它能有效地将任意单量子比特门分解为离散门序列。然而,当前Qiskit的编译流程并未针对这种情况进行特别优化。
提出的解决方案
技术讨论中提出了两个主要改进方向:
- 引入显式合成方法选项:通过transpile函数的translation_method参数明确指定使用合成方法,例如:
transpile(circuit, basis_gates=["h", "t", "tdg", "cx"], translation_method="synthesis")
- 智能自动选择机制:系统可以根据提供的basis_gates自动判断是否采用离散基矢合成方法,无需用户显式指定。
更深入的架构思考
专家建议的长期改进方案包括:
-
引入默认翻译方法插件:创建translation_method="default"插件,不将其绑定到具体实现,而是作为一个抽象层,未来可以包含更智能的电路分发逻辑。
-
考虑专用离散优化管道:当前的编译管道主要面向连续基矢优化,当需要面向错误校正(EC)后端时,可能需要完全独立的离散优化管道。这种架构上的分离将允许针对离散基矢特性进行专门优化。
技术实现考量
实现这一改进需要考虑多个技术细节:
-
插件系统设计:如何设计灵活的插件架构,使得新的合成方法可以方便地集成。
-
性能权衡:离散合成方法如Solovay-Kitaev虽然通用,但可能产生较深的电路,需要与其他优化过程协同工作。
-
用户接口设计:如何在保持接口简洁的同时,提供足够的控制粒度。
未来展望
这一改进将为Qiskit带来更强大的离散基矢处理能力,特别是在面向容错量子计算的应用场景中。随着量子硬件向错误校正方向发展,对离散门集合的高效编译将变得越来越重要。
通过引入更灵活的编译管道和专门的离散优化方法,Qiskit将能够更好地支持未来量子计算的发展需求,为用户提供更高效的量子电路编译体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00