PEFT项目中使用LoRA进行模型微调的技术实践
2025-05-12 22:26:30作者:宗隆裙
在自然语言处理领域,参数高效微调(PEFT)技术已经成为一种重要的模型优化方法。本文将深入探讨如何在PEFT项目中正确使用LoRA(Low-Rank Adaptation)技术进行模型微调,特别是针对不使用Trainer类的情况。
LoRA技术原理
LoRA是一种参数高效的微调方法,其核心思想是通过低秩分解来减少需要训练的参数数量。具体来说,LoRA会在预训练模型的权重矩阵旁添加一个低秩矩阵,只训练这些新增的参数,而保持原始预训练权重不变。这种方法可以显著减少训练时的显存占用和计算量。
不使用Trainer类的实现方法
在PEFT项目中,虽然官方推荐使用Trainer类进行训练,但完全可以实现自定义的训练循环。以下是关键实现步骤:
-
模型加载与LoRA配置: 首先需要加载基础模型,然后配置LoRA参数。典型的配置包括:
- 秩(r):控制低秩矩阵的大小
- alpha:缩放因子
- 目标模块:指定要对哪些模块应用LoRA
-
优化器设置: 使用标准的优化器(如AdamW)进行参数更新。需要注意的是,由于LoRA只训练部分参数,优化器实际上只会更新这些参数。
-
训练循环实现: 自定义训练循环需要手动实现前向传播、损失计算、反向传播和参数更新等步骤。关键点包括:
- 正确处理输入数据的设备转移
- 准确计算损失函数
- 实施梯度裁剪
- 适时更新学习率
显存使用分析
在实际应用中,显存使用情况受多种因素影响:
- 模型规模:基础模型越大,显存占用越高
- 序列长度:长序列会显著增加显存需求
- 优化器选择:某些优化器会占用额外显存
- LoRA配置:秩的大小和目标模块数量直接影响显存占用
值得注意的是,PyTorch有时会预留比实际需要更多的显存,因此需要区分预留显存和实际使用显存。
实践建议
对于希望自定义训练流程的开发人员,建议:
- 仔细监控显存使用情况,区分不同组件的显存占用
- 从小的LoRA配置开始,逐步增加复杂度
- 验证梯度更新是否确实只发生在LoRA参数上
- 考虑混合精度训练以进一步节省显存
通过合理配置和实现,即使不使用Trainer类,也能充分利用LoRA的优势,实现高效的模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
148
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19