PEFT项目中使用LoRA进行模型微调的技术实践
2025-05-12 06:55:15作者:宗隆裙
在自然语言处理领域,参数高效微调(PEFT)技术已经成为一种重要的模型优化方法。本文将深入探讨如何在PEFT项目中正确使用LoRA(Low-Rank Adaptation)技术进行模型微调,特别是针对不使用Trainer类的情况。
LoRA技术原理
LoRA是一种参数高效的微调方法,其核心思想是通过低秩分解来减少需要训练的参数数量。具体来说,LoRA会在预训练模型的权重矩阵旁添加一个低秩矩阵,只训练这些新增的参数,而保持原始预训练权重不变。这种方法可以显著减少训练时的显存占用和计算量。
不使用Trainer类的实现方法
在PEFT项目中,虽然官方推荐使用Trainer类进行训练,但完全可以实现自定义的训练循环。以下是关键实现步骤:
-
模型加载与LoRA配置: 首先需要加载基础模型,然后配置LoRA参数。典型的配置包括:
- 秩(r):控制低秩矩阵的大小
- alpha:缩放因子
- 目标模块:指定要对哪些模块应用LoRA
-
优化器设置: 使用标准的优化器(如AdamW)进行参数更新。需要注意的是,由于LoRA只训练部分参数,优化器实际上只会更新这些参数。
-
训练循环实现: 自定义训练循环需要手动实现前向传播、损失计算、反向传播和参数更新等步骤。关键点包括:
- 正确处理输入数据的设备转移
- 准确计算损失函数
- 实施梯度裁剪
- 适时更新学习率
显存使用分析
在实际应用中,显存使用情况受多种因素影响:
- 模型规模:基础模型越大,显存占用越高
- 序列长度:长序列会显著增加显存需求
- 优化器选择:某些优化器会占用额外显存
- LoRA配置:秩的大小和目标模块数量直接影响显存占用
值得注意的是,PyTorch有时会预留比实际需要更多的显存,因此需要区分预留显存和实际使用显存。
实践建议
对于希望自定义训练流程的开发人员,建议:
- 仔细监控显存使用情况,区分不同组件的显存占用
- 从小的LoRA配置开始,逐步增加复杂度
- 验证梯度更新是否确实只发生在LoRA参数上
- 考虑混合精度训练以进一步节省显存
通过合理配置和实现,即使不使用Trainer类,也能充分利用LoRA的优势,实现高效的模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0109AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
65
96

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
557
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399