首页
/ SDV项目中FastML合成器处理货币数值的精度问题分析

SDV项目中FastML合成器处理货币数值的精度问题分析

2025-06-30 15:29:03作者:咎竹峻Karen

问题背景

在使用SDV(Synthetic Data Vault)库的FastML预设合成器时,开发者发现了一个关于数值精度的技术问题。当处理包含货币金额的数据列时,原始数据通常具有固定的2位小数精度(如123.45),但经过FastML合成器处理后,生成的数据却出现了多达17位小数的情况(如123.45000000000000000)。

技术细节分析

这个问题主要涉及以下几个方面:

  1. 数据类型处理:原始数据中的货币列被正确地标记为具有1-3位整数部分和2位小数部分。在Python中,这类数据通常以浮点数或Decimal类型存储。

  2. FastML合成器的工作机制:FastML是SDV提供的一个预设合成器,它基于机器学习算法快速生成合成数据。在处理数值型数据时,它可能没有充分考虑货币数值的特殊精度要求。

  3. 数值精度传播:在数据生成过程中,内部计算可能使用了更高精度的浮点运算,导致最终结果保留了不必要的尾随零。

解决方案

对于需要精确控制小数位数的场景,SDV团队推荐以下两种解决方案:

方案一:更换合成器类型

使用GaussianCopula合成器替代FastML合成器可以解决此问题:

from sdv.single_table import GaussianCopulaSynthesizer

synthesizer = GaussianCopulaSynthesizer(metadata)
synthesizer.fit(df)

GaussianCopula合成器能更好地保持原始数据的小数位数特征。

方案二:后处理修正

如果必须使用FastML合成器,可以在生成数据后对数值进行格式化:

synthetic_data['billing'] = synthetic_data['billing'].round(2)

最佳实践建议

  1. 明确数据类型:在定义元数据时,尽可能明确指定数值类型和精度要求。

  2. 版本升级:确保使用最新版本的SDV库(当前为1.10.0),以获得最佳的性能和问题修复。

  3. 数据验证:在生成合成数据后,建议进行全面的数据质量检查,包括数值精度验证。

  4. 选择合适的合成器:根据数据类型和业务需求选择最适合的合成器,对于财务数据,GaussianCopula通常比FastML更合适。

总结

这个问题揭示了在合成数据生成过程中保持特定数值精度的重要性,特别是在处理财务数据时。SDV团队已经确认了这个问题,并建议用户根据具体需求选择合适的合成器或进行后处理。对于需要精确控制小数位数的场景,GaussianCopula合成器目前提供了更可靠的结果。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.92 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
929
553
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
422
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
65
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8