Apache ECharts中实现点击触发节点高亮的解决方案
2025-04-29 01:12:53作者:裘晴惠Vivianne
背景介绍
Apache ECharts作为一款优秀的可视化图表库,其graph图(关系图)组件常用于展示复杂网络关系。在实际开发中,开发者经常需要实现节点高亮功能,以突出显示当前选中节点及其关联节点和边线。
默认高亮机制分析
ECharts默认提供了节点高亮功能,通过配置focusNodeAdjacency和emphasis可以实现相邻节点高亮效果。典型配置如下:
option = {
series: [{
type: 'graph',
focusNodeAdjacency: true,
emphasis: {
focus: 'adjacency'
}
}]
}
但这种实现存在一个限制:高亮效果只能通过鼠标悬停(hover)触发,无法响应点击(click)事件。这在某些交互场景下可能不符合需求,特别是当需要保持高亮状态直到下一次点击时。
自定义点击高亮实现方案
核心思路
要实现点击触发的高亮效果,需要放弃默认的emphasis配置,改为手动处理点击事件并动态修改图表数据项的透明度。基本思路包括:
- 监听图表的click事件
- 获取被点击节点的ID
- 找出所有关联节点和边线
- 更新节点和边线的透明度
- 应用更新到图表
具体实现代码
chart.on('click', params => {
if (params.dataType === 'node') {
const targetId = params.data.id;
const related = new Set([targetId]);
const relatedLinks = new Set();
// 标记关联元素
links.forEach(link => {
if (link.source === targetId || link.target === targetId) {
related.add(link.source);
related.add(link.target);
relatedLinks.add(`${link.source}-${link.target}`);
}
});
// 更新节点透明度
const newNodes = nodes.map(n => ({
...n,
itemStyle: {
opacity: related.has(n.id) ? 1 : 0.1
}
}));
// 更新连线透明度
const newLinks = links.map(link => ({
...link,
lineStyle: {
opacity: relatedLinks.has(`${link.source}-${link.target}`) ||
relatedLinks.has(`${link.target}-${link.source}`) ? 1 : 0.1
}
}));
// 应用更新并保留布局
chart.setOption({
series: [{
data: newNodes,
links: newLinks,
force: {
initLayout: null // 保留现有位置
}
}]
}, { notMerge: false });
}
});
关键点说明
- 关联节点查找:通过遍历所有边线,找出与点击节点直接相连的所有节点和边线
- 透明度控制:通过设置itemStyle和lineStyle的opacity属性,控制相关元素的显示/淡化
- 布局保持:设置force.initLayout为null,确保力导向图的布局不会因数据更新而重置
- 性能优化:使用Set数据结构存储关联元素,提高查找效率
扩展思考
这种实现方式虽然解决了点击触发的问题,但也带来了一些额外的考虑:
- 状态管理:需要维护原始数据和当前高亮状态
- 交互一致性:可能需要同时支持hover和click两种触发方式
- 动画效果:可以添加transition动画使透明度变化更平滑
- 多选功能:扩展实现支持同时高亮多个节点及其关联网络
最佳实践建议
- 对于简单场景,优先考虑使用ECharts默认的高亮机制
- 当需要更复杂的交互逻辑时,再考虑这种自定义实现
- 注意性能优化,特别是处理大型网络图时
- 考虑添加取消高亮的机制,如点击空白区域恢复默认状态
通过这种自定义实现方式,开发者可以灵活控制ECharts图表的交互行为,满足各种业务场景下的特殊需求。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146