Trulens项目中的Langchain流式输出与异步评估问题解析
2025-07-01 02:45:32作者:晏闻田Solitary
背景介绍
在大型语言模型(LLM)应用开发中,Trulens作为一个开源的评估框架,为开发者提供了监控和评估LLM应用的能力。然而,在实际应用中,当开发者尝试将Langchain的流式输出功能与Trulens的评估仪表板结合使用时,会遇到一些技术挑战。
核心问题分析
流式输出与评估记录的不兼容
在典型的Langchain应用中,开发者使用chain.stream方法可以实现结果的流式输出,这对于提升用户体验非常有价值。然而,这种流式处理方式会导致Trulens无法正确捕获完整的LLM输出结果,评估仪表板上无法显示应有的数据和评分。
异步调用方法的版本兼容性问题
随着Langchain版本升级到0.2.x,原有的acall方法已被替换为ainvoke方法。这种API变更导致直接使用旧代码会出现AttributeError错误,提示RunnableSequence对象没有acall属性。
自定义API密钥的配置问题
当开发者使用公司内部提供的API密钥和基础URL时,Trulens的反馈函数初始化会遇到认证问题,错误提示表明必须设置OPENAI_API_KEY环境变量或直接传递api_key参数。
解决方案与实践
正确的异步流式处理实现
要实现既保持流式输出又能完整记录评估数据,可以采用以下技术方案:
- 使用
AsyncIteratorCallbackHandler处理流式令牌 - 创建异步任务调用链式序列
- 正确处理回调迭代和最终记录
关键代码实现要点包括:
async def generate_chat_responses(message):
callback = AsyncIteratorCallbackHandler()
with tru_recorder as recording:
task = asyncio.create_task(
retrieval_chain.ainvoke(
input=dict(question=message),
callbacks=[callback]
)
)
response = ""
async for token in callback.aiter():
# 处理流式输出
...
await task
record = recording.get()
版本适配与API密钥配置
对于Langchain 0.2.x版本,必须使用ainvoke而非acall方法。同时,为确保自定义API配置正常工作,需要:
- 正确初始化OpenAI提供程序
- 显式传递api_key参数
- 配置反馈模式为"deferred"
示例配置:
provider = OpenAI(api_key=os.environ['API_KEY'])
tru_recorder = TruChain(
retrieval_chain,
app_id='conversation_stream',
feedbacks=[f_answer_relevance],
feedback_mode="deferred"
)
最佳实践建议
- 环境隔离:为不同项目创建独立的Python环境,避免版本冲突
- 显式配置:始终显式传递API密钥和端点配置,而非依赖环境变量
- 错误处理:实现完善的错误处理机制,特别是对于异步操作
- 版本控制:密切关注Langchain和Trulens的版本更新日志
- 测试验证:在开发过程中定期验证评估仪表板的数据完整性
未来改进方向
Trulens开发团队已经意识到这些问题,并在积极改进异步和流式处理的支持。开发者可以关注项目的更新,这些改进将包含在未来的版本发布中。
通过遵循本文提供的解决方案和实践建议,开发者可以成功地将Langchain的流式输出功能与Trulens的评估能力相结合,构建出既用户友好又可评估的高质量LLM应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1