Machine Config Operator 使用教程
1. 项目介绍
Machine Config Operator (MCO) 是 OpenShift 4 中的一个关键组件,专注于管理操作系统的配置和更新。它扩展了 OpenShift 的 operator 平台,涵盖了从内核到 kubelet 之间的所有配置和更新,包括 systemd、cri-o/kubelet、kernel、NetworkManager 等。MCO 提供了一个新的 MachineConfig CRD,允许将配置文件写入主机。
MCO 的设计结合了 CoreOS Tectonic 和 Red Hat Enterprise Linux Atomic Host 的组件,并引入了一些新的设计理念。它与 OpenShift 安装程序和 Red Hat CoreOS 紧密交互,确保新机器在配置和更新方面的无缝管理。
2. 项目快速启动
2.1 安装依赖
在开始使用 MCO 之前,确保你的环境中已经安装了以下依赖:
- OpenShift 4.x
- Kubernetes CLI (kubectl)
- OpenShift CLI (oc)
2.2 部署 MCO
首先,克隆 MCO 的 GitHub 仓库:
git clone https://github.com/openshift/machine-config-operator.git
cd machine-config-operator
接下来,使用 OpenShift CLI 部署 MCO:
oc apply -f manifests/
2.3 验证部署
部署完成后,可以通过以下命令验证 MCO 的状态:
oc describe clusteroperator/machine-config
如果状态显示为“成功”,则表示 MCO 已成功部署并运行。
3. 应用案例和最佳实践
3.1 配置 SSH 密钥
MCO 允许管理员通过 MachineConfig 对象配置 SSH 密钥。以下是一个示例配置:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
name: 99-worker-ssh
labels:
machineconfiguration.openshift.io/role: worker
spec:
config:
ignition:
version: 3.1.0
storage:
files:
- path: /home/core/.ssh/authorized_keys
mode: 0600
contents:
source: data:,ssh-rsa%20AAAAB3NzaC1yc2EAAAADAQABAAABAQC6...
3.2 配置静态网络
在离线环境中,可能需要配置静态网络。以下是一个示例配置:
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
name: 99-worker-static-network
labels:
machineconfiguration.openshift.io/role: worker
spec:
config:
ignition:
version: 3.1.0
storage:
files:
- path: /etc/NetworkManager/system-connections/static.nmconnection
mode: 0600
contents:
source: data:,%5Bconnection%5D%0A...
4. 典型生态项目
4.1 OpenShift Installer
OpenShift Installer 是 OpenShift 4 的安装程序,与 MCO 紧密集成,确保新机器在安装过程中能够正确配置和更新。
4.2 Red Hat CoreOS
Red Hat CoreOS 是 OpenShift 4 的基础操作系统,MCO 负责管理其配置和更新,确保集群中的所有节点保持一致的状态。
4.3 Machine API Operator
Machine API Operator 负责集群中机器的供应和管理,与 MCO 协同工作,确保新机器在配置和更新方面的无缝管理。
通过以上模块的介绍,你应该能够快速上手并使用 Machine Config Operator 进行操作系统的配置和更新。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00