Apache HugeGraph HStore中JRaft Histograms指标NaN问题的分析与解决
问题背景
在Apache HugeGraph的HStore组件中,当通过Spring Actuator接口获取JRaft监控指标时,发现Histograms类型的指标值出现NaN异常。具体表现为jraft_append_logs_bytes_*系列指标全部显示为NaN,而实际上这些指标在JRaft内部统计中是存在有效值的。
问题现象
通过监控接口获取的指标数据显示如下异常:
jraft_append_logs_bytes_summary_count{group="0",handle="data",hg="store",} NaN
jraft_append_logs_bytes_mean{group="0",handle="data",hg="store",} NaN
jraft_append_logs_bytes_min{group="0",handle="data",hg="store",} NaN
...
而实际上,通过JRaft内部统计可以看到这些指标确实有有效值:
append-logs-bytes
count = 67710
min = 110
max = 110
mean = 110.00
stddev = 0.00
median = 110.00
75% <= 110.00
95% <= 110.00
问题分析
经过深入分析,发现问题出在HistogramWrapper类的实现上。当前实现采用了一种缓存机制,每30秒才更新一次快照数据:
private static class HistogramWrapper {
private final com.codahale.metrics.Histogram histogram;
private Snapshot snapshot;
private long ts = System.currentTimeMillis();
HistogramWrapper(com.codahale.metrics.Histogram histogram) {
this.histogram = histogram;
this.snapshot = this.histogram.getSnapshot();
}
Snapshot getSnapshot() {
if (System.currentTimeMillis() - this.ts > 30_000) {
this.snapshot = this.histogram.getSnapshot();
this.ts = System.currentTimeMillis();
}
return this.snapshot;
}
}
这种设计存在两个潜在问题:
-
数据时效性问题:30秒的缓存间隔可能导致获取到的快照数据不是最新的,特别是在系统负载较高时,这种延迟会更加明显。
-
初始化问题:在系统刚启动或指标刚被创建时,如果直接获取快照数据,可能会因为缺乏足够的数据点而导致NaN值的出现。
解决方案
针对上述问题,可以考虑以下几种解决方案:
方案一:优化缓存策略
调整缓存时间间隔,根据实际业务场景选择一个更合适的值。例如,对于高频率变化的指标,可以缩短到10秒:
Snapshot getSnapshot() {
if (System.currentTimeMillis() - this.ts > 10_000) {
this.snapshot = this.histogram.getSnapshot();
this.ts = System.currentTimeMillis();
}
return this.snapshot;
}
方案二:实时获取快照
对于性能要求不是特别高的场景,可以直接获取实时快照数据:
Snapshot getSnapshot() {
return this.histogram.getSnapshot();
}
需要注意的是,这种方式会增加系统开销,特别是在高并发场景下。
方案三:添加数据校验
在返回快照数据前,添加数据有效性检查,避免返回NaN值:
Snapshot getSnapshot() {
Snapshot snapshot = this.histogram.getSnapshot();
if (Double.isNaN(snapshot.getMean())) {
// 返回默认值或上一次的有效快照
return this.lastValidSnapshot;
}
this.lastValidSnapshot = snapshot;
return snapshot;
}
实施建议
在实际应用中,建议根据具体场景选择合适的方案:
-
对于性能敏感但数据时效性要求不高的场景,可以采用方案一,适当调整缓存间隔。
-
对于数据准确性要求高的场景,可以采用方案二,但需要评估性能影响。
-
对于需要兼顾性能和准确性的场景,可以采用方案三,既能保证数据有效性,又能减少不必要的性能开销。
总结
Apache HugeGraph HStore中JRaft Histograms指标NaN问题是一个典型的监控数据采集问题。通过分析其底层实现,我们发现问题的根源在于快照数据的缓存策略和数据有效性检查。针对这一问题,我们提出了三种解决方案,各有优缺点,开发者可以根据实际业务需求选择合适的方案进行优化。
这类问题的解决不仅限于HugeGraph项目,对于其他使用类似监控机制的分布式系统也有参考价值。关键在于平衡数据采集的实时性和系统性能之间的关系,同时确保数据的准确性和可靠性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00