PyTorch-Metric-Learning中Stanford Cars数据集划分问题解析
在深度学习领域,特别是度量学习(Metric Learning)任务中,数据集划分的正确性对模型性能评估至关重要。本文针对Stanford Cars数据集在PyTorch-Metric-Learning项目中的使用情况进行技术分析。
Stanford Cars数据集概述
Stanford Cars数据集是一个经典的细粒度分类数据集,包含16,185张汽车图像,涵盖196种不同车型。该数据集在度量学习研究中被广泛使用,主要用于评估模型在细粒度识别任务中的表现能力。
数据集划分的两种常见方式
在现有文献中,关于Stanford Cars数据集的划分存在两种主要方式:
-
度量学习文献常用划分:将数据集按照类别顺序划分,前98个类别(8,054张图像)用于训练,后98个类别(8,131张图像)用于测试。这种划分方式确保了训练集和测试集在类别上完全不相交。
-
Torchvision官方划分:将数据集划分为8,144张训练图像和8,041张测试图像,每个类别大致按50-50的比例分配。这种划分方式允许训练集和测试集包含相同类别,但具体图像不同。
技术实现建议
对于希望在PyTorch-Metric-Learning框架中使用Stanford Cars数据集的研究人员,建议注意以下几点:
-
明确划分策略:在实验前必须明确采用哪种划分方式,不同划分方式得到的性能指标不具备直接可比性。
-
实现细节:如需重现特定论文结果,应严格按照该论文描述的划分方式实现。例如,在"Metric Learning Reality Check"论文中,采用了第一种划分方式,并将前半部分类别用于交叉验证,后半部分类别用于最终测试。
-
交叉验证:在第一种划分方式下,可以将训练集进一步划分为多个分区进行交叉验证,确保训练和验证集在类别上不相交,这有助于评估模型在开放集任务上的表现。
实际应用注意事项
在实际应用中,研究人员应当:
-
记录并公开所使用的具体划分方式,确保实验结果可复现。
-
注意不同划分方式可能导致模型性能评估的差异,特别是在细粒度分类任务中。
-
对于生产环境应用,建议采用更接近真实场景的数据划分策略,可能需要进行自定义划分。
通过正确理解和应用Stanford Cars数据集的划分策略,可以确保度量学习模型评估的准确性和可比性,为相关研究提供可靠的基础。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00