首页
/ PyTorch-Metric-Learning中Stanford Cars数据集划分问题解析

PyTorch-Metric-Learning中Stanford Cars数据集划分问题解析

2025-06-04 18:25:15作者:傅爽业Veleda

在深度学习领域,特别是度量学习(Metric Learning)任务中,数据集划分的正确性对模型性能评估至关重要。本文针对Stanford Cars数据集在PyTorch-Metric-Learning项目中的使用情况进行技术分析。

Stanford Cars数据集概述

Stanford Cars数据集是一个经典的细粒度分类数据集,包含16,185张汽车图像,涵盖196种不同车型。该数据集在度量学习研究中被广泛使用,主要用于评估模型在细粒度识别任务中的表现能力。

数据集划分的两种常见方式

在现有文献中,关于Stanford Cars数据集的划分存在两种主要方式:

  1. 度量学习文献常用划分:将数据集按照类别顺序划分,前98个类别(8,054张图像)用于训练,后98个类别(8,131张图像)用于测试。这种划分方式确保了训练集和测试集在类别上完全不相交。

  2. Torchvision官方划分:将数据集划分为8,144张训练图像和8,041张测试图像,每个类别大致按50-50的比例分配。这种划分方式允许训练集和测试集包含相同类别,但具体图像不同。

技术实现建议

对于希望在PyTorch-Metric-Learning框架中使用Stanford Cars数据集的研究人员,建议注意以下几点:

  1. 明确划分策略:在实验前必须明确采用哪种划分方式,不同划分方式得到的性能指标不具备直接可比性。

  2. 实现细节:如需重现特定论文结果,应严格按照该论文描述的划分方式实现。例如,在"Metric Learning Reality Check"论文中,采用了第一种划分方式,并将前半部分类别用于交叉验证,后半部分类别用于最终测试。

  3. 交叉验证:在第一种划分方式下,可以将训练集进一步划分为多个分区进行交叉验证,确保训练和验证集在类别上不相交,这有助于评估模型在开放集任务上的表现。

实际应用注意事项

在实际应用中,研究人员应当:

  1. 记录并公开所使用的具体划分方式,确保实验结果可复现。

  2. 注意不同划分方式可能导致模型性能评估的差异,特别是在细粒度分类任务中。

  3. 对于生产环境应用,建议采用更接近真实场景的数据划分策略,可能需要进行自定义划分。

通过正确理解和应用Stanford Cars数据集的划分策略,可以确保度量学习模型评估的准确性和可比性,为相关研究提供可靠的基础。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
24
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
268
2.54 K
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
pytorchpytorch
Ascend Extension for PyTorch
Python
100
126
flutter_flutterflutter_flutter
暂无简介
Dart
558
124
fountainfountain
一个用于服务器应用开发的综合工具库。 - 零配置文件 - 环境变量和命令行参数配置 - 约定优于配置 - 深刻利用仓颉语言特性 - 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
IssueSolutionDemosIssueSolutionDemos
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
cangjie_compilercangjie_compiler
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1