Fugue项目教程:深入理解执行引擎(Execution Engine)的使用
引言
在分布式计算领域,执行引擎(Execution Engine)是数据处理的核心组件。Fugue作为一个统一的分布式计算框架,提供了多种执行引擎的支持,使开发者能够轻松地在不同计算环境间切换。本文将详细介绍Fugue中执行引擎的使用方法,帮助开发者掌握这一关键功能。
执行引擎概述
Fugue支持多种执行引擎,包括Spark、Dask和Ray等。通过统一的API接口,开发者可以无缝切换不同的计算后端,而无需重写业务逻辑代码。这种设计极大地提高了代码的可移植性和开发效率。
基础设置
在开始之前,我们先准备一个简单的示例环境:
import pandas as pd
from fugue import transform
# 创建示例数据
df = pd.DataFrame({"col1": [1,2,3,4], "col2": [1,2,3,4]})
# 定义转换函数,添加新列col3
# schema: *, col3:int
def add_cols(df:pd.DataFrame) -> pd.DataFrame:
return df.assign(col3 = df['col1'] + df['col2'])
这个示例展示了如何创建一个简单的Pandas DataFrame,并定义一个函数来添加新列。注意函数定义中的schema提示,这是Fugue的一个有用特性,可以明确指定输出数据的结构。
通过字符串指定执行引擎
最简单的引擎指定方式是直接传递引擎名称字符串。Fugue会自动在本地启动相应的计算引擎,并利用所有可用的计算资源。
Spark引擎示例
spark_df = transform(df, add_cols, engine="spark")
spark_df.show()
执行结果将显示包含新列col3的DataFrame。Spark引擎适合处理大规模数据集,提供了强大的分布式计算能力。
Dask引擎示例
dask_df = transform(df, add_cols, engine="dask")
dask_df.compute().head()
Dask引擎提供了类似Pandas的API,但支持并行计算,特别适合中等规模数据的处理。
Ray引擎示例
ray_df = transform(df, add_cols, engine="ray")
ray_df.show(5)
Ray是一个新兴的分布式计算框架,特别适合机器学习和AI工作负载,提供了低延迟和高吞吐量的计算能力。
通过Client或Session对象指定引擎
除了字符串方式,Fugue还支持直接传递已创建的引擎会话对象,这种方式提供了更大的灵活性。
Spark会话示例
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark_df = transform(df, add_cols, engine=spark)
spark_df.show()
这种方式允许重用现有的Spark会话,避免重复创建的开销。
Dask Client示例
from distributed import Client
dask_client = Client()
dask_df = transform(df, add_cols, engine=dask_client)
dask_df.compute().head()
通过Dask Client对象,可以更精细地控制计算资源分配。
Ray初始化
import ray
ray.init(ignore_reinit_error=True)
ray_df = transform(df, add_cols, engine="ray")
ray_df.show(5)
Ray的初始化方式略有不同,但同样简单直观。
集群连接与配置
Fugue还支持直接连接到远程计算集群,这为大规模分布式计算提供了便利。
集群连接示例
# Databricks集群
transform(df, add_cols, engine="db", engine_conf=conf)
# Coiled集群
transform(df, add_cols, engine="coiled:my_cluster")
# Anyscale集群
transform(df, add_cols, engine="anyscale://project/cluster-1")
这些连接方式需要额外的认证配置,但提供了强大的云端计算能力。
引擎配置选项
Fugue允许通过engine_conf参数对执行引擎进行详细配置。
配置示例
spark_df = transform(df,
add_cols,
engine=spark,
engine_conf={"fugue.spark.use_pandas_udf":True})
spark_df.show(2)
这个示例启用了Spark的Pandas UDF功能,可以优化某些类型的数据处理性能。
最佳实践与建议
-
开发阶段:建议先使用本地模式(如Dask或Ray本地模式)进行开发和测试,确认逻辑正确后再切换到分布式环境。
-
生产环境:根据数据规模和计算需求选择合适的引擎。大规模数据处理推荐Spark,机器学习任务可考虑Ray。
-
性能调优:合理设置分区数和执行器资源,可以显著提高计算效率。
-
错误处理:熟悉不同引擎的日志格式,便于快速定位问题。
总结
Fugue的执行引擎抽象层为分布式计算提供了极大的便利。通过本文介绍的各种引擎指定方式,开发者可以根据项目需求灵活选择最适合的计算后端。无论是本地开发还是云端部署,Fugue都能提供一致且高效的开发体验。
掌握这些执行引擎的使用方法,将帮助您更好地利用Fugue的强大功能,构建高效可靠的数据处理流程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00