Fugue项目教程:深入理解执行引擎(Execution Engine)的使用
引言
在分布式计算领域,执行引擎(Execution Engine)是数据处理的核心组件。Fugue作为一个统一的分布式计算框架,提供了多种执行引擎的支持,使开发者能够轻松地在不同计算环境间切换。本文将详细介绍Fugue中执行引擎的使用方法,帮助开发者掌握这一关键功能。
执行引擎概述
Fugue支持多种执行引擎,包括Spark、Dask和Ray等。通过统一的API接口,开发者可以无缝切换不同的计算后端,而无需重写业务逻辑代码。这种设计极大地提高了代码的可移植性和开发效率。
基础设置
在开始之前,我们先准备一个简单的示例环境:
import pandas as pd
from fugue import transform
# 创建示例数据
df = pd.DataFrame({"col1": [1,2,3,4], "col2": [1,2,3,4]})
# 定义转换函数,添加新列col3
# schema: *, col3:int
def add_cols(df:pd.DataFrame) -> pd.DataFrame:
return df.assign(col3 = df['col1'] + df['col2'])
这个示例展示了如何创建一个简单的Pandas DataFrame,并定义一个函数来添加新列。注意函数定义中的schema提示,这是Fugue的一个有用特性,可以明确指定输出数据的结构。
通过字符串指定执行引擎
最简单的引擎指定方式是直接传递引擎名称字符串。Fugue会自动在本地启动相应的计算引擎,并利用所有可用的计算资源。
Spark引擎示例
spark_df = transform(df, add_cols, engine="spark")
spark_df.show()
执行结果将显示包含新列col3的DataFrame。Spark引擎适合处理大规模数据集,提供了强大的分布式计算能力。
Dask引擎示例
dask_df = transform(df, add_cols, engine="dask")
dask_df.compute().head()
Dask引擎提供了类似Pandas的API,但支持并行计算,特别适合中等规模数据的处理。
Ray引擎示例
ray_df = transform(df, add_cols, engine="ray")
ray_df.show(5)
Ray是一个新兴的分布式计算框架,特别适合机器学习和AI工作负载,提供了低延迟和高吞吐量的计算能力。
通过Client或Session对象指定引擎
除了字符串方式,Fugue还支持直接传递已创建的引擎会话对象,这种方式提供了更大的灵活性。
Spark会话示例
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
spark_df = transform(df, add_cols, engine=spark)
spark_df.show()
这种方式允许重用现有的Spark会话,避免重复创建的开销。
Dask Client示例
from distributed import Client
dask_client = Client()
dask_df = transform(df, add_cols, engine=dask_client)
dask_df.compute().head()
通过Dask Client对象,可以更精细地控制计算资源分配。
Ray初始化
import ray
ray.init(ignore_reinit_error=True)
ray_df = transform(df, add_cols, engine="ray")
ray_df.show(5)
Ray的初始化方式略有不同,但同样简单直观。
集群连接与配置
Fugue还支持直接连接到远程计算集群,这为大规模分布式计算提供了便利。
集群连接示例
# Databricks集群
transform(df, add_cols, engine="db", engine_conf=conf)
# Coiled集群
transform(df, add_cols, engine="coiled:my_cluster")
# Anyscale集群
transform(df, add_cols, engine="anyscale://project/cluster-1")
这些连接方式需要额外的认证配置,但提供了强大的云端计算能力。
引擎配置选项
Fugue允许通过engine_conf参数对执行引擎进行详细配置。
配置示例
spark_df = transform(df,
add_cols,
engine=spark,
engine_conf={"fugue.spark.use_pandas_udf":True})
spark_df.show(2)
这个示例启用了Spark的Pandas UDF功能,可以优化某些类型的数据处理性能。
最佳实践与建议
-
开发阶段:建议先使用本地模式(如Dask或Ray本地模式)进行开发和测试,确认逻辑正确后再切换到分布式环境。
-
生产环境:根据数据规模和计算需求选择合适的引擎。大规模数据处理推荐Spark,机器学习任务可考虑Ray。
-
性能调优:合理设置分区数和执行器资源,可以显著提高计算效率。
-
错误处理:熟悉不同引擎的日志格式,便于快速定位问题。
总结
Fugue的执行引擎抽象层为分布式计算提供了极大的便利。通过本文介绍的各种引擎指定方式,开发者可以根据项目需求灵活选择最适合的计算后端。无论是本地开发还是云端部署,Fugue都能提供一致且高效的开发体验。
掌握这些执行引擎的使用方法,将帮助您更好地利用Fugue的强大功能,构建高效可靠的数据处理流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00