TorchTitan项目中FSDP2的reduce_scatter_reduce_op在上下文并行中的设计考量
背景介绍
在分布式深度学习训练中,数据并行(DP)和模型并行(MP)是两种常见的并行策略。TorchTitan项目作为PyTorch生态系统中的重要组成部分,实现了FSDP2(完全分片数据并行)这一先进的分布式训练技术。FSDP2通过将模型参数、梯度和优化器状态分片到不同的设备上,显著减少了内存占用,使得训练超大模型成为可能。
问题核心
在FSDP2的实现中,reduce_scatter操作默认会对整个分片世界(包括数据并行分片和上下文并行)的梯度进行平均(reduce_op为平均)。这一设计在纯数据并行场景下是合理的,因为每个设备处理的是不同批次的数据,梯度应该被平均。但当引入上下文并行(CP)时,是否需要采用不同的reduce操作(如求和)就成为了一个值得探讨的技术问题。
技术分析
-
梯度计算的本质:在深度学习中,梯度计算本质上是损失函数对模型参数的偏导数。无论采用何种并行策略,最终目标都是正确计算这些偏导数。
-
上下文并行的特点:上下文并行通常将输入序列分割到不同设备上处理。与数据并行不同,它分割的是序列维度而非批次维度。
-
损失函数设计:如项目中的实现所示,交叉熵损失函数在计算时会将批次和序列维度展平(flatten),并默认采用平均(reduction='mean')作为归约方式。这意味着:
- 对数据并行分片(批次维度)应该采用平均
- 对上下文并行(序列维度)同样应该采用平均
-
数学一致性:采用平均而非求和可以保持梯度计算的数学一致性,确保无论并行配置如何变化,最终的梯度更新方向都是正确的。
设计决策的深层考量
-
数值稳定性:平均操作相比求和能更好地保持梯度的数值范围,有利于训练的稳定性。
-
扩展性:采用平均作为默认操作使得系统能够无缝适应不同的并行配置,无需针对特定场景进行特殊处理。
-
实现简洁性:统一的reduce操作简化了系统实现,减少了潜在的错误来源。
实践意义
这一设计决策对实际训练有着重要影响:
- 确保了在不同并行配置下训练结果的一致性
- 简化了用户的配置工作,无需针对不同并行策略调整reduce操作
- 为混合并行(数据并行+模型并行+上下文并行)提供了统一的基础设施
总结
TorchTitan项目中FSDP2对reduce_scatter操作采用平均作为默认reduce_op是一个经过深思熟虑的设计决策。它不仅考虑了数学正确性,还兼顾了系统实现的简洁性和扩展性。这一设计使得上下文并行能够自然地融入现有的分布式训练框架,为训练超大规模语言模型提供了可靠的基础设施。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0276community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









