Kyuubi 认证机制中KERBEROS与LDAP同时启用问题分析
问题背景
在Apache Kyuubi项目中,认证机制是其安全体系的重要组成部分。Kyuubi支持多种认证方式,包括KERBEROS和LDAP等。在实际生产环境中,有时需要同时启用多种认证机制以满足不同场景的需求。然而,在1.9.0和1.9.1版本中,当同时配置KERBEROS和LDAP认证时,系统会出现认证失败的问题。
问题现象
当在kyuubi-server配置文件中设置kyuubi.authentication=KERBEROS,LDAP时,即尝试同时启用KERBEROS和LDAP认证,用户在使用beeline客户端连接时会出现以下错误:
- 首先执行kinit命令获取Kerberos票据
- 然后通过beeline连接Zookeeper服务发现端点
- 系统报错:"Unable to read HiveServer2 configs from Zookeeper"
- 最终错误提示:"Error validating LDAP user: uid=anonymous"
问题根源分析
经过深入分析,发现问题主要出在两个关键组件上:
-
ZookeeperDiscoveryClient组件:在
addConfsToPublish()方法中,未能正确设置hive.server2.authentication.kerberos.principal参数。这个参数对于Kerberos认证至关重要,它指定了服务主体名称。 -
HiveSiteHS2ConnectionFileParser组件:在
addKerberos()方法中,同样遗漏了对principal参数的设置。这使得客户端无法获取到正确的Kerberos服务主体信息。
这两个关键参数的缺失导致系统在尝试进行LDAP认证时,无法正确回退到Kerberos认证流程,最终导致认证失败。
技术影响
这个问题对系统的影响主要体现在以下几个方面:
-
认证流程中断:当同时配置多种认证方式时,系统无法正确处理认证流程的切换和回退。
-
用户体验下降:用户无法通过预期的认证方式连接到服务,影响正常业务操作。
-
安全机制失效:部分认证机制无法正常工作,可能导致系统安全防护出现缺口。
解决方案
针对这个问题,社区已经提交了修复代码。主要修复内容包括:
-
在ZookeeperDiscoveryClient组件中,确保正确设置Kerberos相关的所有必要参数,包括principal。
-
在HiveSiteHS2ConnectionFileParser组件中,完善Kerberos参数的传递逻辑。
-
增强认证流程的健壮性,确保在多认证机制共存时能够正确处理各种情况。
最佳实践建议
对于需要使用多种认证机制的用户,建议:
-
版本选择:如果必须使用1.9.x版本,建议升级到包含修复的版本。
-
配置检查:在配置多种认证机制时,确保所有相关参数都已正确设置。
-
测试验证:在生产环境部署前,充分测试各种认证场景,确保系统行为符合预期。
-
监控机制:建立完善的认证日志监控,及时发现和解决认证相关问题。
总结
Kyuubi作为大数据生态中的重要组件,其安全机制的正确性和可靠性至关重要。这次发现的问题提醒我们,在实现复杂的安全认证流程时,需要特别注意各种边界条件和参数传递的完整性。通过社区的及时修复,这个问题已经得到解决,为用户提供了更加稳定可靠的多认证机制支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00