ManticoreSearch中RT表内存使用优化实践
内存使用问题分析
在使用ManticoreSearch 7.0.0版本时,用户创建了一个包含浮点向量(embedding)的RT(实时)表,表结构采用了columnar引擎,并设置了5GB的内存限制(rt_mem_limit='5368709120')。然而实际测试中发现,随着数据不断导入,Pod内存使用量呈线性增长,最终达到存储数据量的约1/3比例。
内存消耗原因
经过分析,这种内存增长主要源于HNSW索引结构(.spknn文件)的内存占用。HNSW(可导航小世界图)是一种用于高效近似最近邻搜索的图索引结构,它需要将索引数据保留在内存中以实现快速查询。特别是当表包含高维浮点向量(如1280维的embedding)时,内存消耗会更为显著。
现有解决方案
目前版本中,针对RT表的内存使用问题,可以考虑以下几种方案:
-
调整rt_mem_limit参数:虽然已经设置,但需要注意这只是软限制,实际内存使用可能超过此值
-
定期重启服务:如测试所示,重启后内存会释放,但这只是临时解决方案
-
优化向量维度:如果业务允许,可以考虑降低向量维度,能显著减少内存占用
未来优化方向
ManticoreSearch团队正在开发向量量化(Vector Quantization)功能,这将有效降低HNSW索引的内存占用。此外,用户也可以关注以下可能的改进方向:
-
Plain表支持浮点向量:当前版本Plain表不支持Float vector属性,未来版本可能会加入此功能
-
更高效的内存管理:优化内存分配和回收机制
-
替代索引结构:开发内存占用更低的近似最近邻搜索算法
实践建议
对于生产环境部署,建议:
-
密切监控内存使用情况,设置合理的告警阈值
-
根据业务需求平衡查询性能和内存消耗
-
考虑使用更高配置的服务器,特别是内存容量
-
定期评估数据增长趋势,提前规划资源扩容
通过以上分析和建议,希望能帮助用户更好地理解和管理ManticoreSearch中的内存使用问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00