首页
/ ManticoreSearch中RT表内存使用优化实践

ManticoreSearch中RT表内存使用优化实践

2025-05-23 05:18:09作者:何举烈Damon

内存使用问题分析

在使用ManticoreSearch 7.0.0版本时,用户创建了一个包含浮点向量(embedding)的RT(实时)表,表结构采用了columnar引擎,并设置了5GB的内存限制(rt_mem_limit='5368709120')。然而实际测试中发现,随着数据不断导入,Pod内存使用量呈线性增长,最终达到存储数据量的约1/3比例。

内存消耗原因

经过分析,这种内存增长主要源于HNSW索引结构(.spknn文件)的内存占用。HNSW(可导航小世界图)是一种用于高效近似最近邻搜索的图索引结构,它需要将索引数据保留在内存中以实现快速查询。特别是当表包含高维浮点向量(如1280维的embedding)时,内存消耗会更为显著。

现有解决方案

目前版本中,针对RT表的内存使用问题,可以考虑以下几种方案:

  1. 调整rt_mem_limit参数:虽然已经设置,但需要注意这只是软限制,实际内存使用可能超过此值

  2. 定期重启服务:如测试所示,重启后内存会释放,但这只是临时解决方案

  3. 优化向量维度:如果业务允许,可以考虑降低向量维度,能显著减少内存占用

未来优化方向

ManticoreSearch团队正在开发向量量化(Vector Quantization)功能,这将有效降低HNSW索引的内存占用。此外,用户也可以关注以下可能的改进方向:

  1. Plain表支持浮点向量:当前版本Plain表不支持Float vector属性,未来版本可能会加入此功能

  2. 更高效的内存管理:优化内存分配和回收机制

  3. 替代索引结构:开发内存占用更低的近似最近邻搜索算法

实践建议

对于生产环境部署,建议:

  1. 密切监控内存使用情况,设置合理的告警阈值

  2. 根据业务需求平衡查询性能和内存消耗

  3. 考虑使用更高配置的服务器,特别是内存容量

  4. 定期评估数据增长趋势,提前规划资源扩容

通过以上分析和建议,希望能帮助用户更好地理解和管理ManticoreSearch中的内存使用问题。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
408
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
14
1