DynamicTp线程池拒绝策略下的内存泄漏问题分析与修复
2025-06-14 07:29:04作者:秋阔奎Evelyn
问题背景
在使用DynamicTp 1.1.6.1版本时,发现当线程池采用AbortPolicy拒绝策略并频繁触发拒绝时,会导致严重的内存泄漏问题。具体表现为ThreadPoolStatProvider中的stopWatchMap不断增长,最终可能达到数GB级别而无法被GC回收,最终导致应用崩溃。
技术原理分析
DynamicTp框架为了增强线程池监控能力,在任务执行前后添加了性能监控逻辑。核心机制如下:
- 任务执行监控:通过PerformanceMonitorAware在任务执行前记录开始时间
- 拒绝策略增强:通过RejectedInvocationHandler对原生拒绝策略进行代理增强
- 时间记录存储:使用ConcurrentHashMap保存任务与开始时间的映射关系
内存泄漏根源
问题出在拒绝策略的处理链路上:
- 当任务被提交时,PerformanceMonitorAware会先将任务放入stopWatchMap
- 如果线程池已满,会触发拒绝策略
- 对于AbortPolicy这类会抛出异常的拒绝策略,由于异常抛出导致afterReject清理逻辑未能执行
- 结果就是stopWatchMap中的条目只增不减,最终耗尽内存
关键代码缺陷在于RejectedInvocationHandler中没有在finally块中执行清理逻辑,导致异常抛出时资源无法释放。
解决方案
修复方案的核心思路是确保无论拒绝策略是否抛出异常,都能正确清理stopWatchMap中的条目。具体实现方式是将afterReject调用放入finally块中:
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
try {
beforeReject((Runnable) args[0], (Executor) args[1]);
Object result = method.invoke(target, args);
return result;
} catch (InvocationTargetException ex) {
throw ex.getCause();
} finally {
afterReject((Runnable) args[0], (Executor) args[1]);
}
}
临时规避方案
在修复版本发布前,可以通过以下方式临时规避问题:
- 设置系统属性
-Ddtp.execute.enhanced=false禁用执行增强 - 使用不会抛出异常的拒绝策略,如CallerRunsPolicy
最佳实践建议
- 对于高并发场景,建议及时升级到修复版本
- 合理配置线程池参数,避免频繁触发拒绝策略
- 监控stopWatchMap的大小,设置告警阈值
- 根据业务特点选择合适的拒绝策略
总结
这次内存泄漏问题揭示了框架在异常处理路径上的资源管理缺陷。通过分析我们可以看到,在增强原生组件功能时,必须特别注意异常情况下的资源清理工作。这也提醒我们在开发类似功能时,应当遵循"资源获取即初始化"(RAII)原则,确保在任何执行路径下都能正确释放资源。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120