Spinning Up 开源项目教程
2024-08-21 13:47:46作者:侯霆垣
1. 项目的目录结构及介绍
Spinning Up 项目的目录结构如下:
spinningup/
├── LICENSE
├── README.md
├── setup.py
├── spinup/
│ ├── __init__.py
│ ├── algos/
│ │ ├── __init__.py
│ │ ├── ppo.py
│ │ ├── vpg.py
│ │ └── ...
│ ├── utils/
│ │ ├── __init__.py
│ │ ├── logx.py
│ │ ├── mpi_tools.py
│ │ └── ...
│ ├── user_config.py
│ └── ...
├── docs/
│ ├── _build/
│ ├── _static/
│ ├── _templates/
│ ├── conf.py
│ ├── index.rst
│ └── ...
└── ...
目录结构介绍
spinningup/
: 项目根目录。LICENSE
: 项目许可证文件。README.md
: 项目介绍和使用说明。setup.py
: 项目安装脚本。spinup/
: 主要代码目录。algos/
: 包含各种强化学习算法的实现。utils/
: 包含各种工具函数和辅助模块。user_config.py
: 用户配置文件。
docs/
: 项目文档目录。
2. 项目的启动文件介绍
Spinning Up 项目的启动文件主要是 spinup/algos/
目录下的各个算法实现文件,例如 ppo.py
和 vpg.py
。这些文件包含了算法的具体实现和训练启动代码。
启动文件示例
以 ppo.py
为例:
from spinup.utils.run_utils import setup_logger_kwargs
from spinup.algos.pytorch.ppo.ppo import ppo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='CartPole-v0')
parser.add_argument('--hid', type=int, default=64)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--cpu', type=int, default=4)
parser.add_argument('--steps', type=int, default=4000)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='ppo')
args = parser.parse_args()
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
ppo(env_fn=lambda: gym.make(args.env), actor_critic=MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma,
seed=args.seed, steps_per_epoch=args.steps, epochs=args.epochs,
logger_kwargs=logger_kwargs)
启动文件介绍
ppo.py
: 实现了 Proximal Policy Optimization (PPO) 算法。vpg.py
: 实现了 Vanilla Policy Gradient (VPG) 算法。- 其他文件:实现了其他各种强化学习算法。
3. 项目的配置文件介绍
Spinning Up 项目的配置文件主要是 spinup/user_config.py
。这个文件包含了用户自定义的配置选项,例如日志路径、模型保存路径等。
配置文件示例
import os
# 日志和模型保存路径
DEFAULT_DATA_DIR = os.path.join(os.getcwd(), 'data')
# 是否使用 MPI 进行并行计算
USE_MPI = False
# 其他配置选项
...
配置文件介绍
DEFAULT_DATA_DIR
: 指定日志和模型保存的默认
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58