Scikit-activeml项目启动与配置教程
2025-04-30 08:00:12作者:霍妲思
1. 项目的目录结构及介绍
Scikit-activeml 是一个基于 scikit-learn 的机器学习库,专门用于活跃学习(Active Learning)。以下是项目的目录结构及各部分的简要介绍:
scikit-activeml/
├── doc/ # 文档目录,包含了项目的文档和教程
├── examples/ # 示例代码目录,包含了一些使用scikit-activeml的示例脚本
├── notebooks/ # Jupyter笔记本目录,包含了项目的一些交互式教程
├── skactiveml/ # 源代码目录,包含了所有模块和类
│ ├── __init__.py
│ ├── datasets/ # 数据集模块
│ ├──ighbors/ # 邻域查询模块
│ ├── pool/ # 池选择策略模块
│ ├── strategies/ # 学习策略模块
│ └──.utils/ # 工具模块
├── tests/ # 测试代码目录
├── setup.py # 项目设置文件,用于构建和安装
└── requirements.txt # 项目依赖文件,列出了项目所需的第三方库
2. 项目的启动文件介绍
Scikit-activeml 的启动主要是通过其源代码目录 skactiveml
中的模块来进行。项目中并没有一个单一的启动文件,而是通过 Python 直接导入所需的模块来使用。例如,如果你想在你的脚本中使用 scikit-activeml 的活跃学习策略,你可以这样导入:
from skactiveml.strategies import SingleAnnotatorQueryStrategy
然后,你可以创建策略的实例,并使用它来进行活跃学习。
3. 项目的配置文件介绍
Scikit-activeml 的配置主要通过环境变量和 Python 的配置文件来完成。requirements.txt
文件列出了项目所需的依赖库,这些库在项目安装时会被自动安装。
如果需要对项目进行更详细的配置,例如设定特定的参数或修改默认行为,可以通过修改源代码目录中的 skactiveml/config.py
文件来实现。这个文件(如果存在)包含了项目的基本配置,如默认的参数设置等。
此外,用户还可以通过在自己的 Python 脚本或 Jupyter 笔记本中设置环境变量来调整配置。例如:
import os
os.environ['SCACTIVEML_DATASETS_PATH'] = '/path/to/datasets'
这样,项目在查找数据集时,会使用指定的路径。需要注意的是,这些配置方法需要用户有一定的编程知识基础。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~053CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0354- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
307
337

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58