Langchain.rb项目中自定义工具的实现与问题解析
2025-07-08 02:58:16作者:滑思眉Philip
在Langchain.rb项目中,开发者可以通过自定义工具来扩展AI助手的功能。本文将通过一个实际案例,深入分析如何正确实现自定义工具类,并解决开发过程中可能遇到的常见问题。
自定义工具的基本实现
Langchain.rb提供了ToolDefinition模块来简化自定义工具的创建过程。开发者需要继承这个模块并定义工具的方法和参数。以下是一个标准的自定义工具实现框架:
class CustomTool
extend Langchain::ToolDefinition
define_function :method_name, description: "功能描述" do
property :param_name, type: "string", description: "参数描述", required: true
end
def initialize
# 初始化代码
end
def method_name(param_name:)
# 方法实现
end
end
常见问题:tool_response方法未定义
在实际开发中,开发者可能会遇到undefined method 'tool_response'的错误。这个问题通常出现在以下情况:
- 工具类没有正确继承
ToolDefinition模块 - 使用了旧版本的Langchain.rb gem
- 方法实现中直接调用了未定义的
tool_response
解决方案与最佳实践
针对上述问题,开发者可以采取以下措施:
-
版本升级:确保使用最新版本的Langchain.rb(0.19.4及以上版本),该版本已修复相关功能
-
正确实现工具类:工具方法应返回字符串值,而不是直接调用
tool_response方法。例如:
def search_food(query:)
"Grapefruit Juice" # 直接返回字符串结果
end
- 功能验证:在集成工具前,先验证工具类的基本功能:
food_tool = FoodDatabaseTool.new
puts food_tool.respond_to?(:search_food) # 应返回true
完整示例代码
以下是一个经过验证的正确实现示例:
require "langchain"
require "openai"
class FoodDatabaseTool
extend Langchain::ToolDefinition
define_function :search_food, description: "搜索食物数据库" do
property :query, type: "string", description: "要搜索的食物名称", required: true
end
def initialize
# 可在此初始化数据库连接等资源
end
def search_food(query:)
# 实际应用中这里可能是数据库查询或API调用
"搜索结果: #{query}"
end
end
# 初始化AI助手
llm = Langchain::LLM::OpenAI.new(
api_key: ENV["OPENAI_API_KEY"],
default_options: { temperature: 0.7, chat_model: "gpt-4" }
)
assistant = Langchain::Assistant.new(
llm: llm,
instructions: "您是一个能提供食物信息的AI助手",
tools: [FoodDatabaseTool.new]
)
# 使用助手查询
assistant.add_message_and_run!(content: "请查找含有葡萄柚的食物")
总结
在Langchain.rb项目中实现自定义工具时,开发者需要注意版本兼容性和方法实现的规范性。通过遵循上述最佳实践,可以避免常见的tool_response方法未定义问题,并构建出功能完善的AI助手扩展工具。
对于更复杂的需求,建议参考项目文档中的高级工具实现部分,了解如何处理更复杂的返回类型和错误情况。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30