Langchain.rb项目中自定义工具的实现与问题解析
2025-07-08 00:34:15作者:滑思眉Philip
在Langchain.rb项目中,开发者可以通过自定义工具来扩展AI助手的功能。本文将通过一个实际案例,深入分析如何正确实现自定义工具类,并解决开发过程中可能遇到的常见问题。
自定义工具的基本实现
Langchain.rb提供了ToolDefinition
模块来简化自定义工具的创建过程。开发者需要继承这个模块并定义工具的方法和参数。以下是一个标准的自定义工具实现框架:
class CustomTool
extend Langchain::ToolDefinition
define_function :method_name, description: "功能描述" do
property :param_name, type: "string", description: "参数描述", required: true
end
def initialize
# 初始化代码
end
def method_name(param_name:)
# 方法实现
end
end
常见问题:tool_response方法未定义
在实际开发中,开发者可能会遇到undefined method 'tool_response'
的错误。这个问题通常出现在以下情况:
- 工具类没有正确继承
ToolDefinition
模块 - 使用了旧版本的Langchain.rb gem
- 方法实现中直接调用了未定义的
tool_response
解决方案与最佳实践
针对上述问题,开发者可以采取以下措施:
-
版本升级:确保使用最新版本的Langchain.rb(0.19.4及以上版本),该版本已修复相关功能
-
正确实现工具类:工具方法应返回字符串值,而不是直接调用
tool_response
方法。例如:
def search_food(query:)
"Grapefruit Juice" # 直接返回字符串结果
end
- 功能验证:在集成工具前,先验证工具类的基本功能:
food_tool = FoodDatabaseTool.new
puts food_tool.respond_to?(:search_food) # 应返回true
完整示例代码
以下是一个经过验证的正确实现示例:
require "langchain"
require "openai"
class FoodDatabaseTool
extend Langchain::ToolDefinition
define_function :search_food, description: "搜索食物数据库" do
property :query, type: "string", description: "要搜索的食物名称", required: true
end
def initialize
# 可在此初始化数据库连接等资源
end
def search_food(query:)
# 实际应用中这里可能是数据库查询或API调用
"搜索结果: #{query}"
end
end
# 初始化AI助手
llm = Langchain::LLM::OpenAI.new(
api_key: ENV["OPENAI_API_KEY"],
default_options: { temperature: 0.7, chat_model: "gpt-4" }
)
assistant = Langchain::Assistant.new(
llm: llm,
instructions: "您是一个能提供食物信息的AI助手",
tools: [FoodDatabaseTool.new]
)
# 使用助手查询
assistant.add_message_and_run!(content: "请查找含有葡萄柚的食物")
总结
在Langchain.rb项目中实现自定义工具时,开发者需要注意版本兼容性和方法实现的规范性。通过遵循上述最佳实践,可以避免常见的tool_response
方法未定义问题,并构建出功能完善的AI助手扩展工具。
对于更复杂的需求,建议参考项目文档中的高级工具实现部分,了解如何处理更复杂的返回类型和错误情况。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193