Ollama项目GPU调用问题排查与解决方案
2025-04-26 22:37:33作者:滑思眉Philip
问题背景
在Linux系统中以非root用户手动安装Ollama 0.5.7版本后,用户遇到了无法调用GPU的问题。尽管系统配备了NVIDIA GeForce RTX 4090显卡,且Ollama的日志显示检测到了GPU设备,但实际运行时却只使用了CPU进行计算。
问题现象分析
从日志中可以观察到几个关键现象:
- 系统检测到了三块NVIDIA GeForce RTX 4090显卡,每块显卡的显存为23.6GB,且可用显存充足
- 动态LLM库加载时只识别到了CPU运行器(runners=[cpu])
- 虽然ollama ps命令显示模型正在使用GPU,但nvidia-smi命令并未显示Ollama进程占用GPU资源
- top命令显示Ollama进程正在大量占用CPU资源
根本原因
经过技术分析,这个问题主要源于Ollama的安装目录结构不规范和运行方式不当:
- 目录结构问题:Ollama的二进制文件和运行器(runners)没有按照预期的目录结构存放
- 运行方式问题:用户可能使用了相对路径或系统PATH中的ollama命令,而非绝对路径
解决方案
要解决这个问题,需要确保以下几点:
-
规范的目录结构:
- 二进制文件应放置在:
/安装路径/bin/ollama - 运行器应放置在:
/安装路径/lib/ollama/runners/
- 二进制文件应放置在:
-
正确的运行方式:
- 必须使用绝对路径运行Ollama服务:
/安装路径/bin/ollama serve - 避免直接使用
ollama serve这样的相对路径或系统PATH中的命令
- 必须使用绝对路径运行Ollama服务:
技术原理
Ollama在运行时需要加载特定的GPU运行器库文件,这些库文件默认会从预定义的相对路径中查找。当目录结构不规范或使用相对路径运行时,系统可能无法正确找到这些GPU运行器,导致回退到CPU模式。
验证方法
验证问题是否解决可以检查以下几点:
- 运行ollama时观察日志中是否显示正确的GPU运行器加载
- 使用nvidia-smi命令确认Ollama进程是否出现在GPU进程列表中
- 使用top命令观察CPU占用率是否显著下降
最佳实践建议
- 在Linux系统中安装Ollama时,建议使用官方推荐的安装方式
- 如果必须手动安装,务必保持目录结构的规范性
- 可以设置环境变量或创建符号链接来简化绝对路径的使用
- 定期检查Ollama的日志,确保GPU资源被正确识别和利用
总结
Ollama作为一款强大的LLM运行框架,正确配置GPU加速可以显著提升模型推理性能。通过规范安装目录和使用绝对路径运行,可以有效解决GPU调用失败的问题,充分发挥硬件性能优势。对于深度学习开发者来说,理解这些配置细节对于优化模型运行效率至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
167
187
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
255
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.18 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
261
92