LaVague项目中的LLM运行成本追踪功能实现
2025-06-04 19:02:05作者:姚月梅Lane
在AI应用开发过程中,准确追踪每次LLM(Large Language Model)运行的token消耗量对于成本控制和性能优化至关重要。LaVague项目团队最近实现了这一关键功能,使开发者能够更清晰地了解每次API调用的实际资源消耗。
功能背景
LLM服务通常按token数量计费,无论是使用本地部署还是云API。token是LLM处理文本的基本单位,可以简单理解为单词或字符的分割。了解每次运行的token消耗量有助于:
- 精确计算运行成本
- 优化提示词设计
- 评估系统性能
- 制定合理的资源分配计划
技术实现方案
LaVague团队评估了两种主要的技术方案来实现token计数功能:
方案一:直接解析LLM响应
第一种方法是从LLM的原始响应中提取token使用信息。大多数LLM服务会在响应中包含"usage"字段,记录prompt tokens、completion tokens等详细信息。这种方法简单直接,但存在一定局限性。
方案二:使用Token Counting Handler
第二种方案采用了LlamaIndex提供的Token Counting Handler回调机制。该方案基于tiktoken(OpenAI开源的tokenizer)实现,具有以下优势:
- 标准化处理不同LLM的token计算
- 提供更一致的计数结果
- 支持多种LLM模型
- 可扩展性强
经过评估,团队选择了第二种方案作为最终实现,因其提供了更可靠和一致的token计数能力。
功能集成与使用
在LaVague项目中,token计数功能已通过以下方式集成:
from lavague.core.token_counter_init import init_token_counter
agent = WebAgent(world_model, action_engine, token_counter=init_token_counter())
启用后,系统日志将新增以下关键指标:
{
"embedding_tokens": 1605,
"llm_prompt_tokens": 1729,
"llm_completion_tokens": 512,
"total_llm_tokens": 2241
}
这些数据点分别表示:
- 嵌入处理的token数量
- 提示词消耗的token数量
- 生成内容消耗的token数量
- 本次运行总token消耗量
应用价值
这一功能的实现为开发者带来了多重价值:
- 成本透明化:精确了解每次API调用的实际费用
- 性能优化:通过分析token使用模式优化提示词设计
- 资源规划:基于历史数据评估资源需求
- 调试辅助:快速定位异常高消耗的操作
后续计划
LaVague团队计划进一步扩展这一功能,包括:
- 集成GPT缓存机制分析
- 提供可视化成本分析工具
- 开发自动优化建议功能
- 支持更多LLM供应商的特定计数方式
这一功能的实现标志着LaVague项目在开发者体验和成本管理方面迈出了重要一步,为构建高效、经济的LLM应用提供了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
447
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
684
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
153
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
930
82