LaVague项目中的LLM运行成本追踪功能实现
2025-06-04 18:57:44作者:姚月梅Lane
在AI应用开发过程中,准确追踪每次LLM(Large Language Model)运行的token消耗量对于成本控制和性能优化至关重要。LaVague项目团队最近实现了这一关键功能,使开发者能够更清晰地了解每次API调用的实际资源消耗。
功能背景
LLM服务通常按token数量计费,无论是使用本地部署还是云API。token是LLM处理文本的基本单位,可以简单理解为单词或字符的分割。了解每次运行的token消耗量有助于:
- 精确计算运行成本
- 优化提示词设计
- 评估系统性能
- 制定合理的资源分配计划
技术实现方案
LaVague团队评估了两种主要的技术方案来实现token计数功能:
方案一:直接解析LLM响应
第一种方法是从LLM的原始响应中提取token使用信息。大多数LLM服务会在响应中包含"usage"字段,记录prompt tokens、completion tokens等详细信息。这种方法简单直接,但存在一定局限性。
方案二:使用Token Counting Handler
第二种方案采用了LlamaIndex提供的Token Counting Handler回调机制。该方案基于tiktoken(OpenAI开源的tokenizer)实现,具有以下优势:
- 标准化处理不同LLM的token计算
- 提供更一致的计数结果
- 支持多种LLM模型
- 可扩展性强
经过评估,团队选择了第二种方案作为最终实现,因其提供了更可靠和一致的token计数能力。
功能集成与使用
在LaVague项目中,token计数功能已通过以下方式集成:
from lavague.core.token_counter_init import init_token_counter
agent = WebAgent(world_model, action_engine, token_counter=init_token_counter())
启用后,系统日志将新增以下关键指标:
{
"embedding_tokens": 1605,
"llm_prompt_tokens": 1729,
"llm_completion_tokens": 512,
"total_llm_tokens": 2241
}
这些数据点分别表示:
- 嵌入处理的token数量
- 提示词消耗的token数量
- 生成内容消耗的token数量
- 本次运行总token消耗量
应用价值
这一功能的实现为开发者带来了多重价值:
- 成本透明化:精确了解每次API调用的实际费用
- 性能优化:通过分析token使用模式优化提示词设计
- 资源规划:基于历史数据评估资源需求
- 调试辅助:快速定位异常高消耗的操作
后续计划
LaVague团队计划进一步扩展这一功能,包括:
- 集成GPT缓存机制分析
- 提供可视化成本分析工具
- 开发自动优化建议功能
- 支持更多LLM供应商的特定计数方式
这一功能的实现标志着LaVague项目在开发者体验和成本管理方面迈出了重要一步,为构建高效、经济的LLM应用提供了坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0368Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++094AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
193
2.16 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
972
573

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
548
77

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
349
1.36 K

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
C++
206
284

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17