Investopedia Trading API 开源项目教程
2025-05-19 10:50:02作者:农烁颖Land
1. 项目介绍
Investopedia Trading API 是一个用 Python 编写的开源项目,它为 Investopedia 的虚拟交易系统提供了一个接口。这个 API 允许用户通过编程方式管理他们的交易账户,获取股票报价,执行买卖操作等。
2. 项目快速启动
在开始之前,确保你已经安装了 Python 环境。
安装 InvestopediaApi
首先,你需要安装 InvestopediaApi 库。可以使用 pip 命令来安装:
pip install InvestopediaApi
创建账户并登录
接下来,你需要创建一个 Investopedia 的交易账户,然后使用以下代码登录:
from InvestopediaApi import ita
client = ita.Account("your_email@example.com", "your_password")
替换 your_email@example.com 和 your_password 为你的 Investopedia 账户的邮箱和密码。
3. 应用案例和最佳实践
以下是一些使用 Investopedia Trading API 的常见应用案例和最佳实践。
获取投资组合状态
你可以获取你的账户状态,包括账户价值、购买力、现金和年化回报:
status = client.get_portfolio_status()
print(status.account_val)
print(status.buying_power)
print(status.cash)
print(status.annual_return)
获取当前持仓证券
获取你的投资组合中的所有证券信息:
portfolio = client.get_current_securities()
bought_securities = portfolio.bought
for security in bought_securities:
print(security.symbol)
print(security.description)
print(security.purchase_price)
# 输出更多信息...
执行交易
执行交易是 API 的核心功能之一。以下是如何买入和卖出证券的示例:
# 买入 10 股 Google (GOOG) 以市场价格
client.trade("GOOG", ita.Action.buy, 10)
# 卖出 10 股 Google 以市场价格
client.trade("GOOG", ita.Action.sell, 10)
# 空头 10 股 Google
client.trade("GOOG", ita.Action.short, 10)
# 以 $500 的限价买入 10 股 Google
client.trade("GOOG", ita.Action.buy, 10, "Limit", 500)
4. 典型生态项目
Investopedia Trading API 可以与其他开源项目结合使用,以创建更复杂的交易策略和自动化工具。以下是一些可能的生态项目:
- 数据分析和可视化工具:结合数据分析和可视化库(如 Pandas 和 Matplotlib)来分析交易数据。
- 机器学习模型:使用机器学习库(如 Scikit-learn)来预测市场走势,并据此制定交易策略。
- 自动化交易工具:构建一个自动化工具,自动执行基于预设参数的交易策略。
通过上述教程,你已经可以开始使用 Investopedia Trading API 来探索和开发自己的交易策略了。记住,在进行任何实际交易之前,充分测试你的策略是非常重要的。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
422
3.25 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869